最大熵模型(Maximum Entropy Model)是一种机器学习方法,在自然语言处理的许多领域(如词性标注、中文分词、句子边界识别、浅层句法分析及文本分类等)都有比较好的应用效果。张乐博士的最大熵模型工具包manual里有“Further Reading”,写得不错,就放到这里作为最大熵模型文献阅读指南了。
  与《统计机器翻译文献阅读指南》不同,由于自己也正在努力学习Maximum Entropy Model中,没啥发言权,就不多说废话了。这些文献在Google上很容易找到,不过多数都比较长(30多页),甚至有两篇是博士论文,有100多页,希望初学读者不要被吓住了,毕竟经典的东西是值得反复推敲的!

Maximum Entropy Model Tutorial Reading

  This section lists some recommended papers for your further reference.

1. Maximum Entropy Approach to Natural Language Processing [Berger et al., 1996]
  (必读)A must read paper on applying maxent technique to Natural Language Processing. This paper describes maxent in detail and presents an Increment Feature Selection algorithm for increasingly construct a maxent model as well as several example in statistical Machine Translation.

2.Inducing Features of Random Fields [Della Pietra et al., 1997]
  (必读)Another must read paper on maxent. It deals with a more general frame work: Random Fields and proposes an Improved Iterative Scaling algorithm for estimating parameters of Random Fields. This paper gives theoretical background to Random Fields (and hence Maxent model). A greedy Field Induction method is presented to automatically construct a detail random elds from a set of atomic features. An word morphology application for English is developed.

3.Adaptive Statistical Language Modeling: A Maximum Entropy Approach [Rosenfeld, 1996]
  This paper applied ME technique to statistical language modeling task. More specically, it built a conditional Maximum Entropy model that incorporated traditional N-gram, distant N-gram and trigger pair features. Significantly perplexity reduction over baseline trigram model was reported. Later, Rosenfeld and his group proposed a Whole Sentence Exponential Model that overcome the computation bottleneck of conditional ME model.

4.Maximum Entropy Models For Natural Language Ambiguity Resolution [Ratnaparkhi, 1998]
  This dissertation discussed the application of maxent model to various Natural Language Disambiguity tasks in detail. Several problems were attacked within the ME framework: sentence boundary detection, part-of-speech tagging, shallow parsing and text categorization. Comparison with other machine learning technique (Naive Bayes, Transform Based Learning, Decision Tree etc.) are given.

5.The Improved Iterative Scaling Algorithm: A Gentle Introduction [Berger, 1997]
  This paper describes IIS algorithm in detail. The description is easier to understand than [Della Pietra et al., 1997], which involves more mathematical notations.

6.Stochastic Attribute-Value Grammars (Abney, 1997)
  Abney applied Improved Iterative Scaling algorithm to parameters estimation of Attribute-Value grammars, which can not be corrected calculated by ERF method (though it works on PCFG). Random Fields is the model of choice here with a general Metropolis-Hasting Sampling on calculating feature expectation under newly constructed model.

7.A comparison of algorithms for maximum entropy parameter estimation [Malouf, 2003]
  Four iterative parameter estimation algorithms were compared on several NLP tasks. L-BFGS was observed to be the most effective parameter estimation method for Maximum Entropy model, much better than IIS and GIS. [Wallach, 2002] reported similar results on parameter estimation of Conditional Random Fields.

附录:
张乐博士的最大熵模型工具包:
 http://homepages.inf.ed.ac.uk/lzhang10/maxent_toolkit.html
关于最大熵模型的两个参考网页,后者也是一个reading list,但是较早:
 1.MaxEnt and Exponential Models
 2.A maxent reading list

注:转载请注明出处“我爱自然语言处理”:www.52nlp.cn

本文链接地址:https://www.52nlp.cn/maximum-entropy-model-tutorial-reading

作者 52nlp

《最大熵模型文献阅读指南》有5条评论
  1. 我一开始看Berger的时候也是一头雾水,后来按照Linear Regression -> Logistic Regression -> MaxEnt的思路,觉得稍微清楚一些。供参考。

    [回复]

  2. 对,忘了说这个了,《自然语言处理综论》第二版(Speech and Language Processing 2nd)新加的第六章“Hidden Markov and Maximum Entropy Models”关于最大熵模型的讲解就是沿用Linear Regression -> Logistic Regression -> MaxEnt这个思路的,从最大熵模型的背景知识入手,讲得很不错,也是值得参考的阅读资料!谢谢提醒!

    [回复]

  3. 《自然语言处理综论》,好书呀。可惜现在各大网上书店严重缺货,出版社倒是还可以买到。最大熵模型也在看,以后多来讨教了~~呵呵

    [回复]

    52nlp 回复:

    不过目前国内的《自然语言处理综论》还是冯志伟教授翻译的第一版,第一版似乎还没有讲最大熵模型,英文版第二版才有。

    [回复]

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注