在HMM这个翻译系列的原文中,作者举了一个前向算法的交互例子,这也是这个系列中比较出彩的地方,但是,在具体运行这个例子的时候,却发现其似乎有点问题。
  先说一下如何使用这个交互例子,运行时需要浏览器支持java,我用的是firefox。首先在Set按钮前面的对话框里上观察序列,如“Dry,Damp, Soggy” 或“Dry Damp Soggy”,观察符号间用逗号或空格隔开;然后再点击Set按钮,这样就初始化了观察矩阵;如果想得到一个总的结果,即Pr(观察序列|隐马尔科夫模型),就点旁边的Run按钮;如果想一步一步观察计算过程,即每个节点的局部概率,就单击旁边的Step按钮。
  原文交互例子(即天气这个例子)中所定义的已知隐马尔科夫模型如下:
  1、隐藏状态 (天气):Sunny,Cloudy,Rainy;
  2、观察状态(海藻湿度):Dry,Dryish,Damp,Soggy;
  3、初始状态概率: Sunny(0.63), Cloudy(0.17), Rainy(0.20);
  4、状态转移矩阵:

             weather today
             Sunny Cloudy Rainy
     weather Sunny 0.500 0.375 0.125
    yesterday Cloudy 0.250 0.125 0.625
          Rainy  0.250 0.375 0.375

  5、混淆矩阵:

            observed states
           Dry Dryish Damp Soggy
         Sunny 0.60 0.20 0.15 0.05
    hidden  Cloudy 0.25 0.25 0.25 0.25
    states  Rainy 0.05 0.10 0.35 0.50

  为了UMDHMM也能运行这个例子,我们将上述天气例子中的隐马尔科夫模型转化为如下的UMDHMM可读的HMM文件weather.hmm:
--------------------------------------------------------------------
    M= 4
    N= 3 
    A:
    0.500 0.375 0.125
    0.250 0.125 0.625
    0.250 0.375 0.375
    B:
    0.60 0.20 0.15 0.05
    0.25 0.25 0.25 0.25
    0.05 0.10 0.35 0.50
    pi:
    0.63 0.17 0.20
--------------------------------------------------------------------
  在运行例子之前,如果读者也想观察每一步的运算结果,可以将umdhmm-v1.02目录下forward.c中的void Forward(…)函数替换如下:
--------------------------------------------------------------------
void Forward(HMM *phmm, int T, int *O, double **alpha, double *pprob)
{
  int i, j; /* state indices */
  int t; /* time index */
  double sum; /* partial sum */
  
  /* 1. Initialization */
  for (i = 1; i <= phmm->N; i++)
  {
    alpha[1][i] = phmm->pi[i]* phmm->B[i][O[1]];
    printf( "a[1][%d] = pi[%d] * b[%d][%d] = %f * %f = %f\\n",i, i, i, O[i], phmm->pi[i], phmm->B[i][O[1]], alpha[1][i] );
  }
  
  /* 2. Induction */
  for (t = 1; t < T; t++)   {     for (j = 1; j <= phmm->N; j++)
    {
      sum = 0.0;
      for (i = 1; i <= phmm->N; i++)
      {
        sum += alpha[t][i]* (phmm->A[i][j]);
        printf( "a[%d][%d] * A[%d][%d] = %f * %f = %f\\n", t, i, i, j, alpha[t][i], phmm->A[i][j], alpha[t][i]* (phmm->A[i][j]));
        printf( "sum = %f\\n", sum );
      }
      alpha[t+1][j] = sum*(phmm->B[j][O[t+1]]);
      printf( "a[%d][%d] = sum * b[%d][%d]] = %f * %f = %f\\n",t+1, j, j, O[t+1], sum, phmm->B[j][O[t+1]], alpha[t+1][j] );
    }
  }

  /* 3. Termination */
  *pprob = 0.0;
  for (i = 1; i <= phmm->N; i++)
  {
    *pprob += alpha[T][i];
    printf( "alpha[%d][%d] = %f\\n", T, i, alpha[T][i] );
    printf( "pprob = %f\\n", *pprob );
  }
}
--------------------------------------------------------------------
  替换完毕之后,重新“make clean”,“make all”,这样新的testfor可执行程序就可以输出前向算法每一步的计算结果。
  现在我们就用testfor来运行原文中默认给出的观察序列“Dry,Damp,Soggy”,其所对应的UMDHMM可读的观察序列文件test1.seq:
--------------------------------------------------------------------
    T=3
    1 3 4
--------------------------------------------------------------------
  好了,一切准备工作就绪,现在就输入如下命令:
    testfor weather.hmm test1.seq > result1
  result1就包含了所有的结果细节:
--------------------------------------------------------------------
Forward without scaling
a[1][1] = pi[1] * b[1][1] = 0.630000 * 0.600000 = 0.378000
a[1][2] = pi[2] * b[2][3] = 0.170000 * 0.250000 = 0.042500
a[1][3] = pi[3] * b[3][4] = 0.200000 * 0.050000 = 0.010000

pprob = 0.026901
log prob(O| model) = -3.615577E+00
prob(O| model) = 0.026901


--------------------------------------------------------------------
  黑体部分是最终的观察序列的概率结果,即本例中的Pr(观察序列|HMM) = 0.026901。
  但是,在原文中点Run按钮后,结果却是:Probability of this model = 0.027386915。
  这其中的差别到底在哪里?我们来仔细观察一下中间运行过程:
  在初始化亦t=1时刻的局部概率计算两个是一致的,没有问题。但是,t=2时,在隐藏状态“Sunny”的局部概率是不一致的。英文原文给出的例子的运行结果是:
  Alpha = (((0.37800002*0.5) + (0.0425*0.375) + (0.010000001*0.125)) * 0.15) = 0.03092813
  而UMDHMM给出的结果是:
--------------------------------------------------------------------
  a[1][1] * A[1][1] = 0.378000 * 0.500000 = 0.189000
  sum = 0.189000
  a[1][2] * A[2][1] = 0.042500 * 0.250000 = 0.010625
  sum = 0.199625
  a[1][3] * A[3][1] = 0.010000 * 0.250000 = 0.002500
  sum = 0.202125
  a[2][1] = sum * b[1][3]] = 0.202125 * 0.150000 = 0.030319
--------------------------------------------------------------------
  区别就在于状态转移概率的选择上,原文选择的是状态转移矩阵中的第一行,而UMDHMM选择的则是状态转移矩阵中的第一列。如果从原文给出的状态转移矩阵来看,第一行代表的是从前一时刻的状态“Sunny”分别到当前时刻的状态“Sunny”,“Cloudy”,“Rainy”的概率;而第一列代表的是从前一时刻的状态“Sunny”,“Cloudy”,“Rainy”分别到当前时刻状态“Sunny”的概率。这样看来似乎原文的计算过程有误,读者不妨多试几个例子看看,前向算法这一章就到此为止了。

未完待续:维特比算法1

本翻译系列原文请参考:http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html

注:原创文章,转载请注明出处“我爱自然语言处理”:www.52nlp.cn

本文链接地址:https://www.52nlp.cn/hmm-learn-best-practices-five-forward-algorithm-5

作者 52nlp

《HMM学习最佳范例五:前向算法5》有57条评论
  1. cygwin搭建的环境,执行后,提示如下,请教是怎么回事
    HP_2@HBNJHH ~/umdhmm-v1.02
    $ testfor weather.hmm test1.seq>result1
    -bash: testfor: 未找到命令

    [回复]

    52nlp 回复:

    testfor 可编译成功了?

    [回复]

  2. cygwin搭建的环境,执行后,提示如下,请教是怎么回事
    HP_2@HBNJHH ~/umdhmm-v1.02
    $ ./testfor weather.hmm test1.seq>result1
    -bash: ./testfor: cannot execute binary file: Exec format error

    [回复]

  3. 计算过程有错误:
    /* 1. Initialization */
    for (i = 1; i N; i++){
    alpha[1][i] = phmm->pi[i]* phmm->B[i][O[1]]; //i 行数,指的是隐藏状态,
    printf( "alpha[1][%d] = pi[%d] * b[%d][%d] = %f * %f = %f\n",i, i, i, O[1], phmm->pi[i], phmm->B[i][O[1]], alpha[1][i] );
    }
    这里的B[i][O[1]]中O[1]一直都是1。
    应该是:
    alpha[1][1]=pi[1]*b[1][1]=0.63000*0.6000=0.378000
    alpha[1][2]=pi[2]*b[2][1]=0.17*0.378=0.064260
    alpha[1][3]=pi[3]*b[3][1]=0.2*0.05=0.01000

    [回复]

    ywf 回复:

    这里的O[i]是对应的观察值序列,不一定是1

    [回复]

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注