注:目前可以直接在AINLP公众号上体验腾讯词向量,公众号对话直接输入:相似词 词条
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线。维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据。此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基百科数据,训练word2vec模型,用于计算词语之间的语义相似度。感谢Google,在gensim的google group下,找到了一个很长的讨论帖:training word2vec on full Wikipedia ,这个帖子基本上把如何使用gensim在维基百科语料上训练word2vec模型的问题说清楚了,甚至参与讨论的gensim的作者Radim Řehůřek博士还在新的gensim版本里加了一点修正,而对于我来说,所做的工作就是做一下验证而已。虽然github上有一个wiki2vec的项目也是做得这个事,不过我更喜欢用python gensim的方式解决问题。
关于word2vec,这方面无论中英文的参考资料相当的多,英文方面既可以看官方推荐的论文,也可以看gensim作者Radim Řehůřek博士写得一些文章。而中文方面,推荐 @licstar的《Deep Learning in NLP (一)词向量和语言模型》,有道技术沙龙的《Deep Learning实战之word2vec》,@飞林沙 的《word2vec的学习思路》, falao_beiliu 的《深度学习word2vec笔记之基础篇》和《深度学习word2vec笔记之算法篇》等。
一、英文维基百科的Word2Vec测试
首先测试了英文维基百科的数据,下载的是xml压缩后的最新数据(下载日期是2015年3月1号),大概11G,下载地址:
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
处理包括两个阶段,首先将xml的wiki数据转换为text格式,通过下面这个脚本(process_wiki.py)实现:
注:因为很多同学留言是在python3.x环境下使用遇到问题,这里修改了一个版本兼容python2.x和python3.x, Ubuntu16.04下测试有效(2017.5.1)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Pan Yang (panyangnlp@gmail.com) # Copyrigh 2017 from __future__ import print_function import logging import os.path import six import sys from gensim.corpora import WikiCorpus if __name__ == '__main__': program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) # check and process input arguments if len(sys.argv) != 3: print("Using: python process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text") sys.exit(1) inp, outp = sys.argv[1:3] space = " " i = 0 output = open(outp, 'w') wiki = WikiCorpus(inp, lemmatize=False, dictionary={}) for text in wiki.get_texts(): if six.PY3: output.write(b' '.join(text).decode('utf-8') + '\n') # ###another method### # output.write( # space.join(map(lambda x:x.decode("utf-8"), text)) + '\n') else: output.write(space.join(text) + "\n") i = i + 1 if (i % 10000 == 0): logger.info("Saved " + str(i) + " articles") output.close() logger.info("Finished Saved " + str(i) + " articles") |
这里利用了gensim里的维基百科处理类WikiCorpus,通过get_texts将维基里的每篇文章转换位1行text文本,并且去掉了标点符号等内容,注意这里“wiki = WikiCorpus(inp, lemmatize=False, dictionary={})”将lemmatize设置为False的主要目的是不使用pattern模块来进行英文单词的词干化处理,无论你的电脑是否已经安装了pattern,因为使用pattern会严重影响这个处理过程,变得很慢。
执行"python process_wiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text":
2015-03-07 15:08:39,181: INFO: running process_enwiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text 2015-03-07 15:11:12,860: INFO: Saved 10000 articles 2015-03-07 15:13:25,369: INFO: Saved 20000 articles 2015-03-07 15:15:19,771: INFO: Saved 30000 articles 2015-03-07 15:16:58,424: INFO: Saved 40000 articles 2015-03-07 15:18:12,374: INFO: Saved 50000 articles 2015-03-07 15:19:03,213: INFO: Saved 60000 articles 2015-03-07 15:19:47,656: INFO: Saved 70000 articles 2015-03-07 15:20:29,135: INFO: Saved 80000 articles 2015-03-07 15:22:02,365: INFO: Saved 90000 articles 2015-03-07 15:23:40,141: INFO: Saved 100000 articles ..... 2015-03-07 19:33:16,549: INFO: Saved 3700000 articles 2015-03-07 19:33:49,493: INFO: Saved 3710000 articles 2015-03-07 19:34:23,442: INFO: Saved 3720000 articles 2015-03-07 19:34:57,984: INFO: Saved 3730000 articles 2015-03-07 19:35:31,976: INFO: Saved 3740000 articles 2015-03-07 19:36:05,790: INFO: Saved 3750000 articles 2015-03-07 19:36:32,392: INFO: finished iterating over Wikipedia corpus of 3758076 documents with 2018886604 positions (total 15271374 articles, 2075130438 positions before pruning articles shorter than 50 words) 2015-03-07 19:36:32,394: INFO: Finished Saved 3758076 articles |
在我的macpro(4核16G机器)大约跑了4个半小时,处理了375万的文章后,我们得到了一个12G的text格式的英文维基百科数据wiki.en.text,格式类似这样的:
anarchism is collection of movements and ideologies that hold the state to be undesirable unnecessary or harmful these movements advocate some form of stateless society instead often based on self governed voluntary institutions or non hierarchical free associations although anti statism is central to anarchism as political philosophy anarchism also entails rejection of and often hierarchical organisation in general as an anti dogmatic philosophy anarchism draws on many currents of thought and strategy anarchism does not offer fixed body of doctrine from single particular world view instead fluxing and flowing as philosophy there are many types and traditions of anarchism not all of which are mutually exclusive anarchist schools of thought can differ fundamentally supporting anything from extreme individualism to complete collectivism strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications anarchism is usually considered radical left wing ideology and much of anarchist economics and anarchist legal philosophy reflect anti authoritarian interpretations of communism collectivism syndicalism mutualism or participatory economics etymology and terminology the term anarchism is compound word composed from the word anarchy and the suffix ism themselves derived respectively from the greek anarchy from anarchos meaning one without rulers from the privative prefix ἀν an without and archos leader ruler cf archon or arkhē authority sovereignty realm magistracy and the suffix or ismos isma from the verbal infinitive suffix...
有了这个数据后,无论用原始的word2vec binary版本还是gensim中的python word2vec版本,都可以用来训练word2vec模型,不过我们试了一下前者,发现很慢,所以还是采用google group 讨论帖中的gensim word2vec方式的训练脚本,不过做了一点修改,保留了vector text格式的输出,方便debug, 脚本train_word2vec_model.py如下:
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import os import sys import multiprocessing from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence if __name__ == '__main__': program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) # check and process input arguments if len(sys.argv) < 4: print(globals()['__doc__'] % locals()) sys.exit(1) inp, outp1, outp2 = sys.argv[1:4] model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5, workers=multiprocessing.cpu_count()) # trim unneeded model memory = use(much) less RAM # model.init_sims(replace=True) model.save(outp1) model.wv.save_word2vec_format(outp2, binary=False) |
执行 "python train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector":
2015-03-09 22:48:29,588: INFO: running train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector 2015-03-09 22:48:29,593: INFO: collecting all words and their counts 2015-03-09 22:48:29,607: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types 2015-03-09 22:48:50,686: INFO: PROGRESS: at sentence #10000, processed 29353579 words and 430650 word types 2015-03-09 22:49:08,476: INFO: PROGRESS: at sentence #20000, processed 54695775 words and 610833 word types 2015-03-09 22:49:22,985: INFO: PROGRESS: at sentence #30000, processed 75344844 words and 742274 word types 2015-03-09 22:49:35,607: INFO: PROGRESS: at sentence #40000, processed 93430415 words and 859131 word types 2015-03-09 22:49:44,125: INFO: PROGRESS: at sentence #50000, processed 106057188 words and 935606 word types 2015-03-09 22:49:49,185: INFO: PROGRESS: at sentence #60000, processed 114319016 words and 952771 word types 2015-03-09 22:49:53,316: INFO: PROGRESS: at sentence #70000, processed 121263134 words and 969526 word types 2015-03-09 22:49:57,268: INFO: PROGRESS: at sentence #80000, processed 127773799 words and 984130 word types 2015-03-09 22:50:07,593: INFO: PROGRESS: at sentence #90000, processed 142688762 words and 1062932 word types 2015-03-09 22:50:19,162: INFO: PROGRESS: at sentence #100000, processed 159550824 words and 1157644 word types ...... 2015-03-09 23:11:52,977: INFO: PROGRESS: at sentence #3700000, processed 1999452503 words and 7990138 word types 2015-03-09 23:11:55,367: INFO: PROGRESS: at sentence #3710000, processed 2002777270 words and 8002903 word types 2015-03-09 23:11:57,842: INFO: PROGRESS: at sentence #3720000, processed 2006213923 words and 8019620 word types 2015-03-09 23:12:00,439: INFO: PROGRESS: at sentence #3730000, processed 2009762733 words and 8035408 word types 2015-03-09 23:12:02,793: INFO: PROGRESS: at sentence #3740000, processed 2013066196 words and 8045218 word types 2015-03-09 23:12:05,178: INFO: PROGRESS: at sentence #3750000, processed 2016363087 words and 8057784 word types 2015-03-09 23:12:07,013: INFO: collected 8069236 word types from a corpus of 2018886604 words and 3758076 sentences 2015-03-09 23:12:12,230: INFO: total 1969354 word types after removing those with count<5 2015-03-09 23:12:12,230: INFO: constructing a huffman tree from 1969354 words 2015-03-09 23:14:07,415: INFO: built huffman tree with maximum node depth 29 2015-03-09 23:14:09,790: INFO: resetting layer weights 2015-03-09 23:15:04,506: INFO: training model with 4 workers on 1969354 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0 2015-03-09 23:15:19,112: INFO: PROGRESS: at 0.01% words, alpha 0.02500, 19098 words/s 2015-03-09 23:15:20,224: INFO: PROGRESS: at 0.03% words, alpha 0.02500, 37671 words/s 2015-03-09 23:15:22,305: INFO: PROGRESS: at 0.07% words, alpha 0.02500, 75393 words/s 2015-03-09 23:15:27,712: INFO: PROGRESS: at 0.08% words, alpha 0.02499, 65618 words/s 2015-03-09 23:15:29,452: INFO: PROGRESS: at 0.09% words, alpha 0.02500, 70966 words/s 2015-03-09 23:15:34,032: INFO: PROGRESS: at 0.11% words, alpha 0.02498, 77369 words/s 2015-03-09 23:15:37,249: INFO: PROGRESS: at 0.12% words, alpha 0.02498, 74935 words/s 2015-03-09 23:15:40,618: INFO: PROGRESS: at 0.14% words, alpha 0.02498, 75399 words/s 2015-03-09 23:15:42,301: INFO: PROGRESS: at 0.16% words, alpha 0.02497, 86029 words/s 2015-03-09 23:15:46,283: INFO: PROGRESS: at 0.17% words, alpha 0.02497, 83033 words/s 2015-03-09 23:15:48,374: INFO: PROGRESS: at 0.18% words, alpha 0.02497, 83370 words/s 2015-03-09 23:15:51,398: INFO: PROGRESS: at 0.19% words, alpha 0.02496, 82794 words/s 2015-03-09 23:15:55,069: INFO: PROGRESS: at 0.21% words, alpha 0.02496, 83753 words/s 2015-03-09 23:15:57,718: INFO: PROGRESS: at 0.23% words, alpha 0.02496, 85031 words/s 2015-03-09 23:16:00,106: INFO: PROGRESS: at 0.24% words, alpha 0.02495, 86567 words/s 2015-03-09 23:16:05,523: INFO: PROGRESS: at 0.26% words, alpha 0.02495, 84850 words/s 2015-03-09 23:16:06,596: INFO: PROGRESS: at 0.27% words, alpha 0.02495, 87926 words/s 2015-03-09 23:16:09,500: INFO: PROGRESS: at 0.29% words, alpha 0.02494, 88618 words/s 2015-03-09 23:16:10,714: INFO: PROGRESS: at 0.30% words, alpha 0.02494, 91023 words/s 2015-03-09 23:16:18,467: INFO: PROGRESS: at 0.32% words, alpha 0.02494, 85960 words/s 2015-03-09 23:16:19,547: INFO: PROGRESS: at 0.33% words, alpha 0.02493, 89140 words/s 2015-03-09 23:16:23,500: INFO: PROGRESS: at 0.36% words, alpha 0.02493, 92026 words/s 2015-03-09 23:16:29,738: INFO: PROGRESS: at 0.37% words, alpha 0.02491, 88180 words/s 2015-03-09 23:16:32,000: INFO: PROGRESS: at 0.40% words, alpha 0.02492, 92734 words/s 2015-03-09 23:16:34,392: INFO: PROGRESS: at 0.42% words, alpha 0.02491, 93300 words/s 2015-03-09 23:16:41,018: INFO: PROGRESS: at 0.43% words, alpha 0.02490, 89727 words/s ....... 2015-03-10 05:03:31,849: INFO: PROGRESS: at 99.20% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:32,901: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:34,296: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:35,635: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95349 words/s 2015-03-10 05:03:36,730: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:37,489: INFO: reached the end of input; waiting to finish 8 outstanding jobs 2015-03-10 05:03:37,908: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:39,028: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:40,127: INFO: PROGRESS: at 99.24% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:40,910: INFO: training on 1994415728 words took 20916.4s, 95352 words/s 2015-03-10 05:03:41,058: INFO: saving Word2Vec object under wiki.en.text.model, separately None 2015-03-10 05:03:41,209: INFO: not storing attribute syn0norm 2015-03-10 05:03:41,209: INFO: storing numpy array 'syn0' to wiki.en.text.model.syn0.npy 2015-03-10 05:04:35,199: INFO: storing numpy array 'syn1' to wiki.en.text.model.syn1.npy 2015-03-10 05:11:25,400: INFO: storing 1969354x400 projection weights into wiki.en.text.vector |
大约跑了7个小时,我们得到了一个gensim中默认格式的word2vec model和一个原始c版本word2vec的vector格式的模型: wiki.en.text.vector,格式如下:
1969354 400
the 0.129255 0.015725 0.049174 -0.016438 -0.018912 0.032752 0.079885 0.033669 -0.077722 -0.025709 0.012775 0.044153 0.134307 0.070499 -0.002243 0.105198 -0.016832 -0.028631 -0.124312 -0.123064 -0.116838 0.051181 -0.096058 -0.049734 0.017380 -0.101221 0.058945 0.013669 -0.012755 0.061053 0.061813 0.083655 -0.069382 -0.069868 0.066529 -0.037156 -0.072935 -0.009470 0.037412 -0.004406 0.047011 0.005033 -0.066270 -0.031815 0.023160 -0.080117 0.172918 0.065486 -0.072161 0.062875 0.019939 -0.048380 0.198152 -0.098525 0.023434 0.079439 0.045150 -0.079479 -0.051441 -0.021556 -0.024981 -0.045291 0.040284 -0.082500 0.014618 -0.071998 0.031887 0.043916 0.115783 -0.174898 0.086603 -0.023124 0.007293 -0.066576 -0.164817 -0.081223 0.058412 0.000132 0.064160 0.055848 0.029776 -0.103420 -0.007541 -0.031742 0.082533 -0.061760 -0.038961 0.001754 -0.023977 0.069616 0.095920 0.017136 0.067126 -0.111310 0.053632 0.017633 -0.003875 -0.005236 0.063151 0.039729 -0.039158 0.001415 0.021754 -0.012540 0.015070 -0.062636 -0.013605 -0.031770 0.005296 -0.078119 -0.069303 -0.080634 -0.058377 0.024398 -0.028173 0.026353 0.088662 0.018755 -0.113538 0.055538 -0.086012 -0.027708 -0.028788 0.017759 0.029293 0.047674 -0.106734 -0.134380 0.048605 -0.089583 0.029426 0.030552 0.141916 -0.022653 0.017204 -0.036059 0.061045 -0.000077 -0.076579 0.066747 0.060884 -0.072817...
...
在ipython中,我们通过gensim来加载和测试这个模型,因为这个模型大约有7G,所以加载的时间也稍长一些:
In [2]: import gensim # 注:因为gensim版本更新的问题,如果下面这个load有问题,可以使用新的接口:model = gensim.models.word2vec.Word2Vec.load(MODEL_PATH) In [3]: model = gensim.models.Word2Vec.load_word2vec_format("wiki.en.text.vector", binary=False) In [4]: model.most_similar("queen") Out[4]: [(u'princess', 0.5760838389396667), (u'hyoui', 0.5671186447143555), (u'janggyung', 0.5598698854446411), (u'king', 0.5556215047836304), (u'dollallolla', 0.5540223121643066), (u'loranella', 0.5522741079330444), (u'ramphaiphanni', 0.5310937166213989), (u'jeheon', 0.5298476219177246), (u'soheon', 0.5243583917617798), (u'coronation', 0.5217245221138)] In [5]: model.most_similar("man") Out[5]: [(u'woman', 0.7120707035064697), (u'girl', 0.58659827709198), (u'handsome', 0.5637181997299194), (u'boy', 0.5425317287445068), (u'villager', 0.5084836483001709), (u'mustachioed', 0.49287813901901245), (u'mcgucket', 0.48355430364608765), (u'spider', 0.4804879426956177), (u'policeman', 0.4780033826828003), (u'stranger', 0.4750771224498749)] In [6]: model.most_similar("woman") Out[6]: [(u'man', 0.7120705842971802), (u'girl', 0.6736541986465454), (u'prostitute', 0.5765659809112549), (u'divorcee', 0.5429972410202026), (u'person', 0.5276163816452026), (u'schoolgirl', 0.5102938413619995), (u'housewife', 0.48748138546943665), (u'lover', 0.4858251214027405), (u'handsome', 0.4773051142692566), (u'boy', 0.47445783019065857)] In [8]: model.similarity("woman", "man") Out[8]: 0.71207063453821218 In [10]: model.doesnt_match("breakfast cereal dinner lunch".split()) Out[10]: 'cereal' In [11]: model.similarity("woman", "girl") Out[11]: 0.67365416785207421 In [13]: model.most_similar("frog") Out[13]: [(u'toad', 0.6868536472320557), (u'barycragus', 0.6607867479324341), (u'grylio', 0.626731276512146), (u'heckscheri', 0.6208407878875732), (u'clamitans', 0.6150864362716675), (u'coplandi', 0.612680196762085), (u'pseudacris', 0.6108512878417969), (u'litoria', 0.6084023714065552), (u'raniformis', 0.6044802665710449), (u'watjulumensis', 0.6043726205825806)] |
一切ok,但是当加载gensim默认的基于numpy格式的模型时,却遇到了问题:
In [1]: import gensim In [2]: model = gensim.models.Word2Vec.load("wiki.en.text.model") In [3]: model.most_similar("man") ... RuntimeWarning: invalid value encountered in divide self.syn0norm = (self.syn0 / sqrt((self.syn0 ** 2).sum(-1))[..., newaxis]).astype(REAL) Out[3]: [(u'ahsns', nan), (u'ny\xedl', nan), (u'indradeo', nan), (u'jaimovich', nan), (u'addlepate', nan), (u'jagello', nan), (u'festenburg', nan), (u'picatic', nan), (u'tolosanum', nan), (u'mithoo', nan)] |
这也是我修改前面这个脚本的原因所在,这个脚本在训练小一些的数据,譬如前10万条text的时候没任何问题,无论原始格式还是gensim格式,但是当跑完这个英文维基百科的时候,却存在这个问题,试了一些方法解决,还没有成功,如果大家有好的建议或解决方案,欢迎提出。
二、中文维基百科的Word2Vec测试
测试完英文维基百科之后,自然想试试中文的维基百科数据,与英文处理过程相似,也分两个步骤,不过这里需要对中文维基百科数据特殊处理一下,包括繁简转换,中文分词,去除非utf-8字符等。中文数据的下载地址是:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2。
中文维基百科的数据比较小,整个xml的压缩文件大约才1G,相对英文数据小了很多。首先用 process_wiki.py处理这个XML压缩文件,执行:python process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
2015-03-11 17:39:22,739: INFO: running process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text 2015-03-11 17:40:08,329: INFO: Saved 10000 articles 2015-03-11 17:40:45,501: INFO: Saved 20000 articles 2015-03-11 17:41:23,659: INFO: Saved 30000 articles 2015-03-11 17:42:01,748: INFO: Saved 40000 articles 2015-03-11 17:42:33,779: INFO: Saved 50000 articles ...... 2015-03-11 17:55:23,094: INFO: Saved 200000 articles 2015-03-11 17:56:14,692: INFO: Saved 210000 articles 2015-03-11 17:57:04,614: INFO: Saved 220000 articles 2015-03-11 17:57:57,979: INFO: Saved 230000 articles 2015-03-11 17:58:16,621: INFO: finished iterating over Wikipedia corpus of 232894 documents with 51603419 positions (total 2581444 articles, 62177405 positions before pruning articles shorter than 50 words) 2015-03-11 17:58:16,622: INFO: Finished Saved 232894 articles |
得到了大约23万多篇中文语料的text格式的语料:wiki.zh.text,大概750多M。不过查看之后发现,除了加杂一些英文词汇外,还有很多繁体字混迹其中,这里还是参考了 @licstar 《维基百科简体中文语料的获取》中的方法,安装opencc,然后将wiki.zh.text中的繁体字转化位简体字:
opencc -i wiki.zh.text -o wiki.zh.text.jian -c zht2zhs.ini
然后就是分词处理了,这次我用基于MeCab训练的一套中文分词系统来进行中文分词,目前虽还没有达到实用的状态,但是性能和分词结果基本能达到这次的使用要求:
mecab -d ../data/ -O wakati wiki.zh.text.jian -o wiki.zh.text.jian.seg -b 10000000
注意这里data目录下是给mecab训练好的分词模型和词典文件等,详细可参考《用MeCab打造一套实用的中文分词系统》。
有了中文维基百科的分词数据,还以为就可以执行word2vec模型训练了:
python train_word2vec_model.py wiki.zh.text.jian.seg wiki.zh.text.model wiki.zh.text.vector
不过仍然遇到了问题,提示的错误是:
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 5394-5395: invalid continuation byte
google了一下,大致是文件中包含非utf-8字符,又用iconv处理了一下这个问题:
iconv -c -t UTF-8 < wiki.zh.text.jian.seg > wiki.zh.text.jian.seg.utf-8
这样基本上就没问题了,执行:
python train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector
2015-03-11 18:50:02,586: INFO: running train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector 2015-03-11 18:50:02,592: INFO: collecting all words and their counts 2015-03-11 18:50:02,592: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types 2015-03-11 18:50:12,476: INFO: PROGRESS: at sentence #10000, processed 12914562 words and 254662 word types 2015-03-11 18:50:20,215: INFO: PROGRESS: at sentence #20000, processed 22308801 words and 373573 word types 2015-03-11 18:50:28,448: INFO: PROGRESS: at sentence #30000, processed 30724902 words and 460837 word types ... 2015-03-11 18:52:03,498: INFO: PROGRESS: at sentence #210000, processed 143804601 words and 1483608 word types 2015-03-11 18:52:07,772: INFO: PROGRESS: at sentence #220000, processed 149352283 words and 1521199 word types 2015-03-11 18:52:11,639: INFO: PROGRESS: at sentence #230000, processed 154741839 words and 1563584 word types 2015-03-11 18:52:12,746: INFO: collected 1575172 word types from a corpus of 156430908 words and 232894 sentences 2015-03-11 18:52:13,672: INFO: total 278291 word types after removing those with count<5 2015-03-11 18:52:13,673: INFO: constructing a huffman tree from 278291 words 2015-03-11 18:52:29,323: INFO: built huffman tree with maximum node depth 25 2015-03-11 18:52:29,683: INFO: resetting layer weights 2015-03-11 18:52:38,805: INFO: training model with 4 workers on 278291 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0 2015-03-11 18:52:49,504: INFO: PROGRESS: at 0.10% words, alpha 0.02500, 15008 words/s 2015-03-11 18:52:51,935: INFO: PROGRESS: at 0.38% words, alpha 0.02500, 44434 words/s 2015-03-11 18:52:54,779: INFO: PROGRESS: at 0.56% words, alpha 0.02500, 53965 words/s 2015-03-11 18:52:57,240: INFO: PROGRESS: at 0.62% words, alpha 0.02491, 52116 words/s 2015-03-11 18:52:58,823: INFO: PROGRESS: at 0.72% words, alpha 0.02494, 55804 words/s 2015-03-11 18:53:03,649: INFO: PROGRESS: at 0.94% words, alpha 0.02486, 58277 words/s 2015-03-11 18:53:07,357: INFO: PROGRESS: at 1.03% words, alpha 0.02479, 56036 words/s ...... 2015-03-11 19:22:09,002: INFO: PROGRESS: at 98.38% words, alpha 0.00044, 85936 words/s 2015-03-11 19:22:10,321: INFO: PROGRESS: at 98.50% words, alpha 0.00044, 85971 words/s 2015-03-11 19:22:11,934: INFO: PROGRESS: at 98.55% words, alpha 0.00039, 85940 words/s 2015-03-11 19:22:13,384: INFO: PROGRESS: at 98.65% words, alpha 0.00036, 85960 words/s 2015-03-11 19:22:13,883: INFO: training on 152625573 words took 1775.1s, 85982 words/s 2015-03-11 19:22:13,883: INFO: saving Word2Vec object under wiki.zh.text.model, separately None 2015-03-11 19:22:13,884: INFO: not storing attribute syn0norm 2015-03-11 19:22:13,884: INFO: storing numpy array 'syn0' to wiki.zh.text.model.syn0.npy 2015-03-11 19:22:20,797: INFO: storing numpy array 'syn1' to wiki.zh.text.model.syn1.npy 2015-03-11 19:22:40,667: INFO: storing 278291x400 projection weights into wiki.zh.text.vector |
让我们看一下训练好的中文维基百科word2vec模型“wiki.zh.text.vector"的效果:
In [1]: import gensim In [2]: model = gensim.models.Word2Vec.load("wiki.zh.text.model") In [3]: model.most_similar(u"足球") Out[3]: [(u'\u8054\u8d5b', 0.6553816199302673), (u'\u7532\u7ea7', 0.6530429720878601), (u'\u7bee\u7403', 0.5967546701431274), (u'\u4ff1\u4e50\u90e8', 0.5872289538383484), (u'\u4e59\u7ea7', 0.5840631723403931), (u'\u8db3\u7403\u961f', 0.5560152530670166), (u'\u4e9a\u8db3\u8054', 0.5308005809783936), (u'allsvenskan', 0.5249762535095215), (u'\u4ee3\u8868\u961f', 0.5214947462081909), (u'\u7532\u7ec4', 0.5177896022796631)] In [4]: result = model.most_similar(u"足球") In [5]: for e in result: print e[0], e[1] ....: 联赛 0.65538161993 甲级 0.653042972088 篮球 0.596754670143 俱乐部 0.587228953838 乙级 0.58406317234 足球队 0.556015253067 亚足联 0.530800580978 allsvenskan 0.52497625351 代表队 0.521494746208 甲组 0.51778960228 In [6]: result = model.most_similar(u"男人") In [7]: for e in result: print e[0], e[1] ....: 女人 0.77537125349 家伙 0.617369174957 妈妈 0.567102909088 漂亮 0.560832381248 잘했어 0.540875017643 谎言 0.538448691368 爸爸 0.53660941124 傻瓜 0.535608053207 예쁘다 0.535151124001 mc刘 0.529670000076 In [8]: result = model.most_similar(u"女人") In [9]: for e in result: print e[0], e[1] ....: 男人 0.77537125349 我的某 0.589010596275 妈妈 0.576344847679 잘했어 0.562340974808 美丽 0.555426716805 爸爸 0.543958246708 新娘 0.543640494347 谎言 0.540272831917 妞儿 0.531066179276 老婆 0.528521537781 In [10]: result = model.most_similar(u"青蛙") In [11]: for e in result: print e[0], e[1] ....: 老鼠 0.559612870216 乌龟 0.489831030369 蜥蜴 0.478990525007 猫 0.46728849411 鳄鱼 0.461885392666 蟾蜍 0.448014199734 猴子 0.436584025621 白雪公主 0.434905380011 蚯蚓 0.433413207531 螃蟹 0.4314712286 In [12]: result = model.most_similar(u"姨夫") In [13]: for e in result: print e[0], e[1] ....: 堂伯 0.583935439587 祖父 0.574735701084 妃所生 0.569327116013 内弟 0.562012672424 早卒 0.558042645454 曕 0.553856015205 胤祯 0.553288519382 陈潜 0.550716996193 愔之 0.550510883331 叔父 0.550032019615 In [14]: result = model.most_similar(u"衣服") In [15]: for e in result: print e[0], e[1] ....: 鞋子 0.686688780785 穿着 0.672499775887 衣物 0.67173999548 大衣 0.667605519295 裤子 0.662670075893 内裤 0.662210345268 裙子 0.659705817699 西装 0.648508131504 洋装 0.647238850594 围裙 0.642895817757 In [16]: result = model.most_similar(u"公安局") In [17]: for e in result: print e[0], e[1] ....: 司法局 0.730189085007 公安厅 0.634275555611 公安 0.612798035145 房管局 0.597343325615 商业局 0.597183346748 军管会 0.59476184845 体育局 0.59283208847 财政局 0.588721752167 戒毒所 0.575558543205 新闻办 0.573395550251 In [18]: result = model.most_similar(u"铁道部") In [19]: for e in result: print e[0], e[1] ....: 盛光祖 0.565509021282 交通部 0.548688530922 批复 0.546967327595 刘志军 0.541010737419 立项 0.517836689949 报送 0.510296344757 计委 0.508456230164 水利部 0.503531932831 国务院 0.503227233887 经贸委 0.50156635046 In [20]: result = model.most_similar(u"清华大学") In [21]: for e in result: print e[0], e[1] ....: 北京大学 0.763922810555 化学系 0.724210739136 物理系 0.694550514221 数学系 0.684280991554 中山大学 0.677202701569 复旦 0.657914161682 师范大学 0.656435549259 哲学系 0.654701948166 生物系 0.654403865337 中文系 0.653147578239 In [22]: result = model.most_similar(u"卫视") In [23]: for e in result: print e[0], e[1] ....: 湖南 0.676812887192 中文台 0.626506924629 収蔵 0.621356606483 黄金档 0.582251906395 cctv 0.536769032478 安徽 0.536752820015 非同凡响 0.534517168999 唱响 0.533438682556 最强音 0.532605051994 金鹰 0.531676828861 In [24]: result = model.most_similar(u"习近平") In [25]: for e in result: print e[0], e[1] ....: 胡锦涛 0.809472680092 江泽民 0.754633367062 李克强 0.739740967751 贾庆林 0.737033963203 曾庆红 0.732847094536 吴邦国 0.726941585541 总书记 0.719057679176 李瑞环 0.716384887695 温家宝 0.711952567101 王岐山 0.703570842743 In [26]: result = model.most_similar(u"林丹") In [27]: for e in result: print e[0], e[1] ....: 黄综翰 0.538035452366 蒋燕皎 0.52646958828 刘鑫 0.522252976894 韩晶娜 0.516120731831 王晓理 0.512289524078 王适 0.508560419083 杨影 0.508159279823 陈跃 0.507353425026 龚智超 0.503159761429 李敬元 0.50262516737 In [28]: result = model.most_similar(u"语言学") In [29]: for e in result: print e[0], e[1] ....: 社会学 0.632598280907 人类学 0.623406708241 历史学 0.618442356586 比较文学 0.604823827744 心理学 0.600066184998 人文科学 0.577783346176 社会心理学 0.575571238995 政治学 0.574541330338 地理学 0.573896467686 哲学 0.573873817921 In [30]: result = model.most_similar(u"计算机") In [31]: for e in result: print e[0], e[1] ....: 自动化 0.674171924591 应用 0.614087462425 自动化系 0.611132860184 材料科学 0.607891201973 集成电路 0.600370049477 技术 0.597518980503 电子学 0.591316461563 建模 0.577238917351 工程学 0.572855889797 微电子 0.570086717606 In [32]: model.similarity(u"计算机", u"自动化") Out[32]: 0.67417196002404789 In [33]: model.similarity(u"女人", u"男人") Out[33]: 0.77537125129824813 In [34]: model.doesnt_match(u"早餐 晚餐 午餐 中心".split()) Out[34]: u'\u4e2d\u5fc3' In [35]: print model.doesnt_match(u"早餐 晚餐 午餐 中心".split()) 中心 |
有好的也有坏的case,甚至bad case可能会更多一些,这和语料库的规模有关,还和分词器的效果有关等等,不过这个实验暂且就到这里了。至于word2vec有什么用,目前除了用来来计算词语相似度外,业界更关注的是word2vec在具体的应用任务中的效果,这个才是更有意思的东东,也欢迎大家一起探讨。
注:原创文章,转载请注明出处“我爱自然语言处理”:www.52nlp.cn
本文链接地址:https://www.52nlp.cn/中英文维基百科语料上的word2vec实验
是不是多了一个"^" , 其他看不出来;另外没有时间做咨询,抱歉。
[回复]
有windows版本的GloVe和word2vec移植可以直接用的。
https://github.com/anoidgit/GloVe-win
https://github.com/anoidgit/word2vec-win
[回复]
楼主,要想去掉停用词使训练出来的词向量质量好一点,这个min_count得设置成多少合适呢?
[回复]
52nlp 回复:
11 6 月, 2017 at 22:38
直接用停用词表过滤,不是通过min_count过滤的
[回复]
freedomzll 回复:
12 6 月, 2017 at 10:24
怎么用停用词表过滤啊,是Lemur吗?
[回复]
52nlp 回复:
13 6 月, 2017 at 13:15
stopword list
楼主,这个能在Spyder里面调试训练吗
[回复]
52nlp 回复:
14 6 月, 2017 at 14:55
不清楚
[回复]
你好,请问能分享下英文的语料库吗??非常感谢邮箱3342493184@qq.com
[回复]
52nlp 回复:
23 6 月, 2017 at 11:12
维基百科的英文语料可以直接自行下午,文章中已经给出地址。
[回复]
楼主,spacy的英文书籍模型有1G多,在github上一直下不下来。可不可以共享或者发个云盘下载地址到1031531601@qq.com。 十分感谢!
[回复]
52nlp 回复:
23 6 月, 2017 at 11:12
周末我看一下。
[回复]
52nlp 回复:
30 6 月, 2017 at 11:06
你说得是这个模型:en_core_web_md?
[回复]
用python3运行出现runfile('C:/Users/Administrator/sss/process_wiki.py', wdir='C:/Users/Administrator/sss')
C:\Users\Administrator\Anaconda3\lib\site-packages\gensim\utils.py:860: UserWarning: detected Windows; aliasing chunkize to chunkize_serial
warnings.warn("detected Windows; aliasing chunkize to chunkize_serial")
2017-07-07 16:56:25,770: INFO: running C:/Users/Administrator/sss/process_wiki.py
Using: python process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text
An exception has occurred, use %tb to see the full traceback.
SystemExit: 1
C:\Users\Administrator\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:2889: UserWarning: To exit: use 'exit', 'quit', or Ctrl-D.
warn("To exit: use 'exit', 'quit', or Ctrl-D.", stacklevel=1)
是不是版本问题?希望得到博主的回复
[回复]
52nlp 回复:
7 7 月, 2017 at 19:43
你这个命令应该没有执行完全吧?已经弹出提示了:Using: python process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text
[回复]
您好!我用python3运行python train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector在命令行出现slow version of gensim.model.doc2vec is being used,这是怎么回事?希望得到答复!
[回复]
52nlp 回复:
11 7 月, 2017 at 08:03
抱歉,windows和python3的情况我不熟悉,这个warning没有遇到过。搜了一下,你看看这个讨论,貌似安装过程的问题:https://groups.google.com/forum/#!topic/gensim/TaAn5_6sb0Y
[回复]
晋晓琳 回复:
14 7 月, 2017 at 17:27
好的,谢谢啦!
[回复]
运行train_word2vec_model.py出现Slow version of gensim.models.doc2vec is being used然后等待很长时间
File "C:\Users\xiaolin\Anaconda3\lib\site-packages\gensim\models\word2vec.py", line 1545, in __iter__
line = utils.to_unicode(line).split()
MemoryError
这个是内存问题吗?还是其他什么问题?希望得到您的回复,谢谢!
[回复]
52nlp 回复:
11 7 月, 2017 at 08:05
有可能,可以从小样本数据跑起
[回复]
楼主,most_similar返回的相似词中的每个词前面都有u,感觉没什么用,我要重新处理一下这个输出,请问可以把这个u去掉吗,求解?
[回复]
52nlp 回复:
13 7 月, 2017 at 18:09
这是python里unicode编码...
[回复]
楼主您好。我按照您的操作来的。但是训练速度特别慢。大概5分钟0.01%的训练速度。机器是macbookpro,4核8G的。您能帮我看一下么。
def train_w2v(inp, outp):
"""
:param inp: data path that data come from func process_wiki
:param outp: path for sae trained model
:return:
"""
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
# if len(sys.argv) < 2:
# print(globals()['__doc__'] % locals())
# sys.exit(1)
model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5,
workers=multiprocessing.cpu_count())
# trim unneeded model memory = use(much) less RAM
# model.init_sims(replace=True)
# model.save(outp1)
model.wv.save_word2vec_format(outp, binary=False)
wiki的提取已经做了
[回复]
52nlp 回复:
16 7 月, 2017 at 22:43
cython是否安装了?
[回复]
stanpcf 回复:
17 7 月, 2017 at 15:46
有安装,但是看起来性能并没有提升。我按照这个做法做http://ijiaer.com/gensim-mkl-cython/ 。得到的结果是blas并没有加速cython。我找了一下,mkl加持的numpy目前貌似还不支持mac, pip下载的时候报错,但是pip search可以搜到numpy-mkl。楼主也是mac,方便帮我看一下么。 我的qq是1525263547. 非常感谢!!!
[回复]
52nlp 回复:
17 7 月, 2017 at 16:27
不太确定,我这边应该是有加速了,训练的时候一个核可以跑到400%,但时间长了有点忘了。你参考这个看看再按照以下blas https://pheiter.wordpress.com/2012/09/04/howto-installing-lapack-and-blas-on-mac-os/
不错,学习了,谢谢!
不过有以下两个问题:
1.
if six.PY3:
output.write(b' '.join(text).decode('utf-8') + '\n')
这个应该是PY2时的写法吧。
2.
opencc的配置文件现在也变成json格式了:
opencc -i wiki.zh.text -o wiki.zh.text.jian -c t2s.json
[回复]
Parker 回复:
20 7 月, 2017 at 04:48
我也有同样的问题,这个python2的写法该怎么改成python3呢?谢谢
[回复]
52nlp 回复:
20 7 月, 2017 at 09:48
process_wiki.py已经支持python3了
[回复]
作者您好,我在训练完之后测试的时候出现了一下的报错
Traceback (most recent call last):
File "", line 1, in
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/gensim-2.2.0-py2.7-macosx-10.6-intel.egg/gensim/models/word2vec.py", line 1382, in load
model = super(Word2Vec, cls).load(*args, **kwargs)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/gensim-2.2.0-py2.7-macosx-10.6-intel.egg/gensim/utils.py", line 271, in load
obj = unpickle(fname)
File "/Library/Frameworks/Python.framework/Versions/2.7/lib/python2.7/site-packages/gensim-2.2.0-py2.7-macosx-10.6-intel.egg/gensim/utils.py", line 935, in unpickle
return _pickle.loads(f.read())
cPickle.UnpicklingError: unpickling stack underflow
这个原因是什么呢
[回复]
52nlp 回复:
27 7 月, 2017 at 22:50
不太清楚,貌似生成的pickle文件有问题所以无法load?或者说你训练后的数据是完整的吗
[回复]
您好,我在执行process_wiki.py的时候总是会在输出开始执行之后卡住,请问您有遇见过这种问题吗?
[回复]
52nlp 回复:
5 8 月, 2017 at 23:27
没有
[回复]
您好,为什么我在运行python process_wiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text的时候,回报sequence item 0: expected a bytes-like object, str found?
请问是版本问题么,我用的是python34
[回复]
52nlp 回复:
12 8 月, 2017 at 23:00
貌似是版本,但是上面已经更新了2.x和3.x的版本的代码,这个就不太清楚了。
[回复]
WPY 回复:
18 8 月, 2017 at 22:31
把six.PY3改成six.PY2就好了吧
[回复]
博主,您好,能否写一篇基于字向量的word2vec中文分词案例呀?求教了!网上有算法,但是操作代码讲的不够细,不会模仿,例如:http://blog.csdn.net/itplus/article/details/17122431。希望博主能写一篇利用 gensim实现中文字向量的分词方案的技术规格文档,让我们小粉丝学习学习!非常感激!
[回复]
52nlp 回复:
16 8 月, 2017 at 07:52
等等看有没有机会写一篇
[回复]
博主,您好!请问gensim可以做关键词的提取和聚类吗?
[回复]
52nlp 回复:
17 8 月, 2017 at 21:20
gensim提供了一个基于textrank的关键词提取接口:https://radimrehurek.com/gensim/summarization/keywords.html ,聚类貌似没有
[回复]
google提供的word2vec工具有一条指令可以实现关键词的聚类,用一条指令搞定。例如:./word2vec -train resultbig.txt -output classes.txt -cbow 0 -size 200 -window 5 -negative 0 -hs 1 -sample 1e-3 -threads 12 -classes 500
请教博主,gensim除了计算词语之间相似度,有类似将词汇聚类的方法函数吗?
[回复]
52nlp 回复:
17 8 月, 2017 at 21:21
你可以参考一下这个代码,里面基于sklearn.cluster 和 gensim word2vec 实现了聚类,不过我没有试过
https://github.com/DiceTechJobs/ConceptualSearch/blob/master/generate_cluster_synonyms_file.py
[回复]
您好,能否分享一下您训练好的向量模型“wiki.zh.text.vector”?感谢感谢
[回复]
52nlp 回复:
4 9 月, 2017 at 16:11
训练中文维基word2vec的代价很小,为什么不自己动手呢?
[回复]
hain 回复:
21 9 月, 2017 at 10:19
看一下我训练好的词向量:
https://github.com/Samurais/wikidata-corpus/tree/master/pre-trained/zhwiki-latest-pages-articles.0620
项目介绍:https://github.com/Samurais/wikidata-corpus
[回复]
52nlp 回复:
21 9 月, 2017 at 18:33
赞
[回复]
您好,我尝试在ubuntu下运行 python process_wiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text,有如下的报错(下的wiki语料是最新的)
Traceback (most recent call last):
File "process_wiki.py", line 40, in
output.write(space.join(text) + "\n")
UnicodeEncodeError: 'ascii' codec can't encode characters in position 1484-1485: ordinal not in range(128)
不知会不会是语料的问题
[回复]
52nlp 回复:
28 9 月, 2017 at 16:54
你在什么系统下跑的这个程序?试试python2.x跑这个程序看看
[回复]
nlp 回复:
28 9 月, 2017 at 21:46
您好,我就是用的python2.7版本跑的
[回复]
52nlp 回复:
28 9 月, 2017 at 22:02
抱歉,我看错了. Ubuntu + python2.7的环境下,我跑了很多遍这个代码,没遇到过这样的问题,不太清楚你为什么会遇到这个错误。