注:目前可以直接在AINLP公众号上体验腾讯词向量,公众号对话直接输入:相似词 词条
最近试了一下Word2Vec, GloVe 以及对应的python版本 gensim word2vec 和 python-glove,就有心在一个更大规模的语料上测试一下,自然而然维基百科的语料进入了视线。维基百科官方提供了一个很好的维基百科数据源:https://dumps.wikimedia.org,可以方便的下载多种语言多种格式的维基百科数据。此前通过gensim的玩过英文的维基百科语料并训练LSI,LDA模型来计算两个文档的相似度,所以想看看gensim有没有提供一种简便的方式来处理维基百科数据,训练word2vec模型,用于计算词语之间的语义相似度。感谢Google,在gensim的google group下,找到了一个很长的讨论帖:training word2vec on full Wikipedia ,这个帖子基本上把如何使用gensim在维基百科语料上训练word2vec模型的问题说清楚了,甚至参与讨论的gensim的作者Radim Řehůřek博士还在新的gensim版本里加了一点修正,而对于我来说,所做的工作就是做一下验证而已。虽然github上有一个wiki2vec的项目也是做得这个事,不过我更喜欢用python gensim的方式解决问题。
关于word2vec,这方面无论中英文的参考资料相当的多,英文方面既可以看官方推荐的论文,也可以看gensim作者Radim Řehůřek博士写得一些文章。而中文方面,推荐 @licstar的《Deep Learning in NLP (一)词向量和语言模型》,有道技术沙龙的《Deep Learning实战之word2vec》,@飞林沙 的《word2vec的学习思路》, falao_beiliu 的《深度学习word2vec笔记之基础篇》和《深度学习word2vec笔记之算法篇》等。
一、英文维基百科的Word2Vec测试
首先测试了英文维基百科的数据,下载的是xml压缩后的最新数据(下载日期是2015年3月1号),大概11G,下载地址:
https://dumps.wikimedia.org/enwiki/latest/enwiki-latest-pages-articles.xml.bz2
处理包括两个阶段,首先将xml的wiki数据转换为text格式,通过下面这个脚本(process_wiki.py)实现:
注:因为很多同学留言是在python3.x环境下使用遇到问题,这里修改了一个版本兼容python2.x和python3.x, Ubuntu16.04下测试有效(2017.5.1)
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Pan Yang (panyangnlp@gmail.com) # Copyrigh 2017 from __future__ import print_function import logging import os.path import six import sys from gensim.corpora import WikiCorpus if __name__ == '__main__': program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) # check and process input arguments if len(sys.argv) != 3: print("Using: python process_wiki.py enwiki.xxx.xml.bz2 wiki.en.text") sys.exit(1) inp, outp = sys.argv[1:3] space = " " i = 0 output = open(outp, 'w') wiki = WikiCorpus(inp, lemmatize=False, dictionary={}) for text in wiki.get_texts(): if six.PY3: output.write(b' '.join(text).decode('utf-8') + '\n') # ###another method### # output.write( # space.join(map(lambda x:x.decode("utf-8"), text)) + '\n') else: output.write(space.join(text) + "\n") i = i + 1 if (i % 10000 == 0): logger.info("Saved " + str(i) + " articles") output.close() logger.info("Finished Saved " + str(i) + " articles") |
这里利用了gensim里的维基百科处理类WikiCorpus,通过get_texts将维基里的每篇文章转换位1行text文本,并且去掉了标点符号等内容,注意这里“wiki = WikiCorpus(inp, lemmatize=False, dictionary={})”将lemmatize设置为False的主要目的是不使用pattern模块来进行英文单词的词干化处理,无论你的电脑是否已经安装了pattern,因为使用pattern会严重影响这个处理过程,变得很慢。
执行"python process_wiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text":
2015-03-07 15:08:39,181: INFO: running process_enwiki.py enwiki-latest-pages-articles.xml.bz2 wiki.en.text 2015-03-07 15:11:12,860: INFO: Saved 10000 articles 2015-03-07 15:13:25,369: INFO: Saved 20000 articles 2015-03-07 15:15:19,771: INFO: Saved 30000 articles 2015-03-07 15:16:58,424: INFO: Saved 40000 articles 2015-03-07 15:18:12,374: INFO: Saved 50000 articles 2015-03-07 15:19:03,213: INFO: Saved 60000 articles 2015-03-07 15:19:47,656: INFO: Saved 70000 articles 2015-03-07 15:20:29,135: INFO: Saved 80000 articles 2015-03-07 15:22:02,365: INFO: Saved 90000 articles 2015-03-07 15:23:40,141: INFO: Saved 100000 articles ..... 2015-03-07 19:33:16,549: INFO: Saved 3700000 articles 2015-03-07 19:33:49,493: INFO: Saved 3710000 articles 2015-03-07 19:34:23,442: INFO: Saved 3720000 articles 2015-03-07 19:34:57,984: INFO: Saved 3730000 articles 2015-03-07 19:35:31,976: INFO: Saved 3740000 articles 2015-03-07 19:36:05,790: INFO: Saved 3750000 articles 2015-03-07 19:36:32,392: INFO: finished iterating over Wikipedia corpus of 3758076 documents with 2018886604 positions (total 15271374 articles, 2075130438 positions before pruning articles shorter than 50 words) 2015-03-07 19:36:32,394: INFO: Finished Saved 3758076 articles |
在我的macpro(4核16G机器)大约跑了4个半小时,处理了375万的文章后,我们得到了一个12G的text格式的英文维基百科数据wiki.en.text,格式类似这样的:
anarchism is collection of movements and ideologies that hold the state to be undesirable unnecessary or harmful these movements advocate some form of stateless society instead often based on self governed voluntary institutions or non hierarchical free associations although anti statism is central to anarchism as political philosophy anarchism also entails rejection of and often hierarchical organisation in general as an anti dogmatic philosophy anarchism draws on many currents of thought and strategy anarchism does not offer fixed body of doctrine from single particular world view instead fluxing and flowing as philosophy there are many types and traditions of anarchism not all of which are mutually exclusive anarchist schools of thought can differ fundamentally supporting anything from extreme individualism to complete collectivism strains of anarchism have often been divided into the categories of social and individualist anarchism or similar dual classifications anarchism is usually considered radical left wing ideology and much of anarchist economics and anarchist legal philosophy reflect anti authoritarian interpretations of communism collectivism syndicalism mutualism or participatory economics etymology and terminology the term anarchism is compound word composed from the word anarchy and the suffix ism themselves derived respectively from the greek anarchy from anarchos meaning one without rulers from the privative prefix ἀν an without and archos leader ruler cf archon or arkhē authority sovereignty realm magistracy and the suffix or ismos isma from the verbal infinitive suffix...
有了这个数据后,无论用原始的word2vec binary版本还是gensim中的python word2vec版本,都可以用来训练word2vec模型,不过我们试了一下前者,发现很慢,所以还是采用google group 讨论帖中的gensim word2vec方式的训练脚本,不过做了一点修改,保留了vector text格式的输出,方便debug, 脚本train_word2vec_model.py如下:
#!/usr/bin/env python # -*- coding: utf-8 -*- import logging import os import sys import multiprocessing from gensim.models import Word2Vec from gensim.models.word2vec import LineSentence if __name__ == '__main__': program = os.path.basename(sys.argv[0]) logger = logging.getLogger(program) logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s') logging.root.setLevel(level=logging.INFO) logger.info("running %s" % ' '.join(sys.argv)) # check and process input arguments if len(sys.argv) < 4: print(globals()['__doc__'] % locals()) sys.exit(1) inp, outp1, outp2 = sys.argv[1:4] model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5, workers=multiprocessing.cpu_count()) # trim unneeded model memory = use(much) less RAM # model.init_sims(replace=True) model.save(outp1) model.wv.save_word2vec_format(outp2, binary=False) |
执行 "python train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector":
2015-03-09 22:48:29,588: INFO: running train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector 2015-03-09 22:48:29,593: INFO: collecting all words and their counts 2015-03-09 22:48:29,607: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types 2015-03-09 22:48:50,686: INFO: PROGRESS: at sentence #10000, processed 29353579 words and 430650 word types 2015-03-09 22:49:08,476: INFO: PROGRESS: at sentence #20000, processed 54695775 words and 610833 word types 2015-03-09 22:49:22,985: INFO: PROGRESS: at sentence #30000, processed 75344844 words and 742274 word types 2015-03-09 22:49:35,607: INFO: PROGRESS: at sentence #40000, processed 93430415 words and 859131 word types 2015-03-09 22:49:44,125: INFO: PROGRESS: at sentence #50000, processed 106057188 words and 935606 word types 2015-03-09 22:49:49,185: INFO: PROGRESS: at sentence #60000, processed 114319016 words and 952771 word types 2015-03-09 22:49:53,316: INFO: PROGRESS: at sentence #70000, processed 121263134 words and 969526 word types 2015-03-09 22:49:57,268: INFO: PROGRESS: at sentence #80000, processed 127773799 words and 984130 word types 2015-03-09 22:50:07,593: INFO: PROGRESS: at sentence #90000, processed 142688762 words and 1062932 word types 2015-03-09 22:50:19,162: INFO: PROGRESS: at sentence #100000, processed 159550824 words and 1157644 word types ...... 2015-03-09 23:11:52,977: INFO: PROGRESS: at sentence #3700000, processed 1999452503 words and 7990138 word types 2015-03-09 23:11:55,367: INFO: PROGRESS: at sentence #3710000, processed 2002777270 words and 8002903 word types 2015-03-09 23:11:57,842: INFO: PROGRESS: at sentence #3720000, processed 2006213923 words and 8019620 word types 2015-03-09 23:12:00,439: INFO: PROGRESS: at sentence #3730000, processed 2009762733 words and 8035408 word types 2015-03-09 23:12:02,793: INFO: PROGRESS: at sentence #3740000, processed 2013066196 words and 8045218 word types 2015-03-09 23:12:05,178: INFO: PROGRESS: at sentence #3750000, processed 2016363087 words and 8057784 word types 2015-03-09 23:12:07,013: INFO: collected 8069236 word types from a corpus of 2018886604 words and 3758076 sentences 2015-03-09 23:12:12,230: INFO: total 1969354 word types after removing those with count<5 2015-03-09 23:12:12,230: INFO: constructing a huffman tree from 1969354 words 2015-03-09 23:14:07,415: INFO: built huffman tree with maximum node depth 29 2015-03-09 23:14:09,790: INFO: resetting layer weights 2015-03-09 23:15:04,506: INFO: training model with 4 workers on 1969354 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0 2015-03-09 23:15:19,112: INFO: PROGRESS: at 0.01% words, alpha 0.02500, 19098 words/s 2015-03-09 23:15:20,224: INFO: PROGRESS: at 0.03% words, alpha 0.02500, 37671 words/s 2015-03-09 23:15:22,305: INFO: PROGRESS: at 0.07% words, alpha 0.02500, 75393 words/s 2015-03-09 23:15:27,712: INFO: PROGRESS: at 0.08% words, alpha 0.02499, 65618 words/s 2015-03-09 23:15:29,452: INFO: PROGRESS: at 0.09% words, alpha 0.02500, 70966 words/s 2015-03-09 23:15:34,032: INFO: PROGRESS: at 0.11% words, alpha 0.02498, 77369 words/s 2015-03-09 23:15:37,249: INFO: PROGRESS: at 0.12% words, alpha 0.02498, 74935 words/s 2015-03-09 23:15:40,618: INFO: PROGRESS: at 0.14% words, alpha 0.02498, 75399 words/s 2015-03-09 23:15:42,301: INFO: PROGRESS: at 0.16% words, alpha 0.02497, 86029 words/s 2015-03-09 23:15:46,283: INFO: PROGRESS: at 0.17% words, alpha 0.02497, 83033 words/s 2015-03-09 23:15:48,374: INFO: PROGRESS: at 0.18% words, alpha 0.02497, 83370 words/s 2015-03-09 23:15:51,398: INFO: PROGRESS: at 0.19% words, alpha 0.02496, 82794 words/s 2015-03-09 23:15:55,069: INFO: PROGRESS: at 0.21% words, alpha 0.02496, 83753 words/s 2015-03-09 23:15:57,718: INFO: PROGRESS: at 0.23% words, alpha 0.02496, 85031 words/s 2015-03-09 23:16:00,106: INFO: PROGRESS: at 0.24% words, alpha 0.02495, 86567 words/s 2015-03-09 23:16:05,523: INFO: PROGRESS: at 0.26% words, alpha 0.02495, 84850 words/s 2015-03-09 23:16:06,596: INFO: PROGRESS: at 0.27% words, alpha 0.02495, 87926 words/s 2015-03-09 23:16:09,500: INFO: PROGRESS: at 0.29% words, alpha 0.02494, 88618 words/s 2015-03-09 23:16:10,714: INFO: PROGRESS: at 0.30% words, alpha 0.02494, 91023 words/s 2015-03-09 23:16:18,467: INFO: PROGRESS: at 0.32% words, alpha 0.02494, 85960 words/s 2015-03-09 23:16:19,547: INFO: PROGRESS: at 0.33% words, alpha 0.02493, 89140 words/s 2015-03-09 23:16:23,500: INFO: PROGRESS: at 0.36% words, alpha 0.02493, 92026 words/s 2015-03-09 23:16:29,738: INFO: PROGRESS: at 0.37% words, alpha 0.02491, 88180 words/s 2015-03-09 23:16:32,000: INFO: PROGRESS: at 0.40% words, alpha 0.02492, 92734 words/s 2015-03-09 23:16:34,392: INFO: PROGRESS: at 0.42% words, alpha 0.02491, 93300 words/s 2015-03-09 23:16:41,018: INFO: PROGRESS: at 0.43% words, alpha 0.02490, 89727 words/s ....... 2015-03-10 05:03:31,849: INFO: PROGRESS: at 99.20% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:32,901: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:34,296: INFO: PROGRESS: at 99.21% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:35,635: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95349 words/s 2015-03-10 05:03:36,730: INFO: PROGRESS: at 99.22% words, alpha 0.00020, 95350 words/s 2015-03-10 05:03:37,489: INFO: reached the end of input; waiting to finish 8 outstanding jobs 2015-03-10 05:03:37,908: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:39,028: INFO: PROGRESS: at 99.23% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:40,127: INFO: PROGRESS: at 99.24% words, alpha 0.00019, 95350 words/s 2015-03-10 05:03:40,910: INFO: training on 1994415728 words took 20916.4s, 95352 words/s 2015-03-10 05:03:41,058: INFO: saving Word2Vec object under wiki.en.text.model, separately None 2015-03-10 05:03:41,209: INFO: not storing attribute syn0norm 2015-03-10 05:03:41,209: INFO: storing numpy array 'syn0' to wiki.en.text.model.syn0.npy 2015-03-10 05:04:35,199: INFO: storing numpy array 'syn1' to wiki.en.text.model.syn1.npy 2015-03-10 05:11:25,400: INFO: storing 1969354x400 projection weights into wiki.en.text.vector |
大约跑了7个小时,我们得到了一个gensim中默认格式的word2vec model和一个原始c版本word2vec的vector格式的模型: wiki.en.text.vector,格式如下:
1969354 400
the 0.129255 0.015725 0.049174 -0.016438 -0.018912 0.032752 0.079885 0.033669 -0.077722 -0.025709 0.012775 0.044153 0.134307 0.070499 -0.002243 0.105198 -0.016832 -0.028631 -0.124312 -0.123064 -0.116838 0.051181 -0.096058 -0.049734 0.017380 -0.101221 0.058945 0.013669 -0.012755 0.061053 0.061813 0.083655 -0.069382 -0.069868 0.066529 -0.037156 -0.072935 -0.009470 0.037412 -0.004406 0.047011 0.005033 -0.066270 -0.031815 0.023160 -0.080117 0.172918 0.065486 -0.072161 0.062875 0.019939 -0.048380 0.198152 -0.098525 0.023434 0.079439 0.045150 -0.079479 -0.051441 -0.021556 -0.024981 -0.045291 0.040284 -0.082500 0.014618 -0.071998 0.031887 0.043916 0.115783 -0.174898 0.086603 -0.023124 0.007293 -0.066576 -0.164817 -0.081223 0.058412 0.000132 0.064160 0.055848 0.029776 -0.103420 -0.007541 -0.031742 0.082533 -0.061760 -0.038961 0.001754 -0.023977 0.069616 0.095920 0.017136 0.067126 -0.111310 0.053632 0.017633 -0.003875 -0.005236 0.063151 0.039729 -0.039158 0.001415 0.021754 -0.012540 0.015070 -0.062636 -0.013605 -0.031770 0.005296 -0.078119 -0.069303 -0.080634 -0.058377 0.024398 -0.028173 0.026353 0.088662 0.018755 -0.113538 0.055538 -0.086012 -0.027708 -0.028788 0.017759 0.029293 0.047674 -0.106734 -0.134380 0.048605 -0.089583 0.029426 0.030552 0.141916 -0.022653 0.017204 -0.036059 0.061045 -0.000077 -0.076579 0.066747 0.060884 -0.072817...
...
在ipython中,我们通过gensim来加载和测试这个模型,因为这个模型大约有7G,所以加载的时间也稍长一些:
In [2]: import gensim # 注:因为gensim版本更新的问题,如果下面这个load有问题,可以使用新的接口:model = gensim.models.word2vec.Word2Vec.load(MODEL_PATH) In [3]: model = gensim.models.Word2Vec.load_word2vec_format("wiki.en.text.vector", binary=False) In [4]: model.most_similar("queen") Out[4]: [(u'princess', 0.5760838389396667), (u'hyoui', 0.5671186447143555), (u'janggyung', 0.5598698854446411), (u'king', 0.5556215047836304), (u'dollallolla', 0.5540223121643066), (u'loranella', 0.5522741079330444), (u'ramphaiphanni', 0.5310937166213989), (u'jeheon', 0.5298476219177246), (u'soheon', 0.5243583917617798), (u'coronation', 0.5217245221138)] In [5]: model.most_similar("man") Out[5]: [(u'woman', 0.7120707035064697), (u'girl', 0.58659827709198), (u'handsome', 0.5637181997299194), (u'boy', 0.5425317287445068), (u'villager', 0.5084836483001709), (u'mustachioed', 0.49287813901901245), (u'mcgucket', 0.48355430364608765), (u'spider', 0.4804879426956177), (u'policeman', 0.4780033826828003), (u'stranger', 0.4750771224498749)] In [6]: model.most_similar("woman") Out[6]: [(u'man', 0.7120705842971802), (u'girl', 0.6736541986465454), (u'prostitute', 0.5765659809112549), (u'divorcee', 0.5429972410202026), (u'person', 0.5276163816452026), (u'schoolgirl', 0.5102938413619995), (u'housewife', 0.48748138546943665), (u'lover', 0.4858251214027405), (u'handsome', 0.4773051142692566), (u'boy', 0.47445783019065857)] In [8]: model.similarity("woman", "man") Out[8]: 0.71207063453821218 In [10]: model.doesnt_match("breakfast cereal dinner lunch".split()) Out[10]: 'cereal' In [11]: model.similarity("woman", "girl") Out[11]: 0.67365416785207421 In [13]: model.most_similar("frog") Out[13]: [(u'toad', 0.6868536472320557), (u'barycragus', 0.6607867479324341), (u'grylio', 0.626731276512146), (u'heckscheri', 0.6208407878875732), (u'clamitans', 0.6150864362716675), (u'coplandi', 0.612680196762085), (u'pseudacris', 0.6108512878417969), (u'litoria', 0.6084023714065552), (u'raniformis', 0.6044802665710449), (u'watjulumensis', 0.6043726205825806)] |
一切ok,但是当加载gensim默认的基于numpy格式的模型时,却遇到了问题:
In [1]: import gensim In [2]: model = gensim.models.Word2Vec.load("wiki.en.text.model") In [3]: model.most_similar("man") ... RuntimeWarning: invalid value encountered in divide self.syn0norm = (self.syn0 / sqrt((self.syn0 ** 2).sum(-1))[..., newaxis]).astype(REAL) Out[3]: [(u'ahsns', nan), (u'ny\xedl', nan), (u'indradeo', nan), (u'jaimovich', nan), (u'addlepate', nan), (u'jagello', nan), (u'festenburg', nan), (u'picatic', nan), (u'tolosanum', nan), (u'mithoo', nan)] |
这也是我修改前面这个脚本的原因所在,这个脚本在训练小一些的数据,譬如前10万条text的时候没任何问题,无论原始格式还是gensim格式,但是当跑完这个英文维基百科的时候,却存在这个问题,试了一些方法解决,还没有成功,如果大家有好的建议或解决方案,欢迎提出。
二、中文维基百科的Word2Vec测试
测试完英文维基百科之后,自然想试试中文的维基百科数据,与英文处理过程相似,也分两个步骤,不过这里需要对中文维基百科数据特殊处理一下,包括繁简转换,中文分词,去除非utf-8字符等。中文数据的下载地址是:https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2。
中文维基百科的数据比较小,整个xml的压缩文件大约才1G,相对英文数据小了很多。首先用 process_wiki.py处理这个XML压缩文件,执行:python process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
2015-03-11 17:39:22,739: INFO: running process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text 2015-03-11 17:40:08,329: INFO: Saved 10000 articles 2015-03-11 17:40:45,501: INFO: Saved 20000 articles 2015-03-11 17:41:23,659: INFO: Saved 30000 articles 2015-03-11 17:42:01,748: INFO: Saved 40000 articles 2015-03-11 17:42:33,779: INFO: Saved 50000 articles ...... 2015-03-11 17:55:23,094: INFO: Saved 200000 articles 2015-03-11 17:56:14,692: INFO: Saved 210000 articles 2015-03-11 17:57:04,614: INFO: Saved 220000 articles 2015-03-11 17:57:57,979: INFO: Saved 230000 articles 2015-03-11 17:58:16,621: INFO: finished iterating over Wikipedia corpus of 232894 documents with 51603419 positions (total 2581444 articles, 62177405 positions before pruning articles shorter than 50 words) 2015-03-11 17:58:16,622: INFO: Finished Saved 232894 articles |
得到了大约23万多篇中文语料的text格式的语料:wiki.zh.text,大概750多M。不过查看之后发现,除了加杂一些英文词汇外,还有很多繁体字混迹其中,这里还是参考了 @licstar 《维基百科简体中文语料的获取》中的方法,安装opencc,然后将wiki.zh.text中的繁体字转化位简体字:
opencc -i wiki.zh.text -o wiki.zh.text.jian -c zht2zhs.ini
然后就是分词处理了,这次我用基于MeCab训练的一套中文分词系统来进行中文分词,目前虽还没有达到实用的状态,但是性能和分词结果基本能达到这次的使用要求:
mecab -d ../data/ -O wakati wiki.zh.text.jian -o wiki.zh.text.jian.seg -b 10000000
注意这里data目录下是给mecab训练好的分词模型和词典文件等,详细可参考《用MeCab打造一套实用的中文分词系统》。
有了中文维基百科的分词数据,还以为就可以执行word2vec模型训练了:
python train_word2vec_model.py wiki.zh.text.jian.seg wiki.zh.text.model wiki.zh.text.vector
不过仍然遇到了问题,提示的错误是:
UnicodeDecodeError: 'utf8' codec can't decode bytes in position 5394-5395: invalid continuation byte
google了一下,大致是文件中包含非utf-8字符,又用iconv处理了一下这个问题:
iconv -c -t UTF-8 < wiki.zh.text.jian.seg > wiki.zh.text.jian.seg.utf-8
这样基本上就没问题了,执行:
python train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector
2015-03-11 18:50:02,586: INFO: running train_word2vec_model.py wiki.zh.text.jian.seg.utf-8 wiki.zh.text.model wiki.zh.text.vector 2015-03-11 18:50:02,592: INFO: collecting all words and their counts 2015-03-11 18:50:02,592: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types 2015-03-11 18:50:12,476: INFO: PROGRESS: at sentence #10000, processed 12914562 words and 254662 word types 2015-03-11 18:50:20,215: INFO: PROGRESS: at sentence #20000, processed 22308801 words and 373573 word types 2015-03-11 18:50:28,448: INFO: PROGRESS: at sentence #30000, processed 30724902 words and 460837 word types ... 2015-03-11 18:52:03,498: INFO: PROGRESS: at sentence #210000, processed 143804601 words and 1483608 word types 2015-03-11 18:52:07,772: INFO: PROGRESS: at sentence #220000, processed 149352283 words and 1521199 word types 2015-03-11 18:52:11,639: INFO: PROGRESS: at sentence #230000, processed 154741839 words and 1563584 word types 2015-03-11 18:52:12,746: INFO: collected 1575172 word types from a corpus of 156430908 words and 232894 sentences 2015-03-11 18:52:13,672: INFO: total 278291 word types after removing those with count<5 2015-03-11 18:52:13,673: INFO: constructing a huffman tree from 278291 words 2015-03-11 18:52:29,323: INFO: built huffman tree with maximum node depth 25 2015-03-11 18:52:29,683: INFO: resetting layer weights 2015-03-11 18:52:38,805: INFO: training model with 4 workers on 278291 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0 2015-03-11 18:52:49,504: INFO: PROGRESS: at 0.10% words, alpha 0.02500, 15008 words/s 2015-03-11 18:52:51,935: INFO: PROGRESS: at 0.38% words, alpha 0.02500, 44434 words/s 2015-03-11 18:52:54,779: INFO: PROGRESS: at 0.56% words, alpha 0.02500, 53965 words/s 2015-03-11 18:52:57,240: INFO: PROGRESS: at 0.62% words, alpha 0.02491, 52116 words/s 2015-03-11 18:52:58,823: INFO: PROGRESS: at 0.72% words, alpha 0.02494, 55804 words/s 2015-03-11 18:53:03,649: INFO: PROGRESS: at 0.94% words, alpha 0.02486, 58277 words/s 2015-03-11 18:53:07,357: INFO: PROGRESS: at 1.03% words, alpha 0.02479, 56036 words/s ...... 2015-03-11 19:22:09,002: INFO: PROGRESS: at 98.38% words, alpha 0.00044, 85936 words/s 2015-03-11 19:22:10,321: INFO: PROGRESS: at 98.50% words, alpha 0.00044, 85971 words/s 2015-03-11 19:22:11,934: INFO: PROGRESS: at 98.55% words, alpha 0.00039, 85940 words/s 2015-03-11 19:22:13,384: INFO: PROGRESS: at 98.65% words, alpha 0.00036, 85960 words/s 2015-03-11 19:22:13,883: INFO: training on 152625573 words took 1775.1s, 85982 words/s 2015-03-11 19:22:13,883: INFO: saving Word2Vec object under wiki.zh.text.model, separately None 2015-03-11 19:22:13,884: INFO: not storing attribute syn0norm 2015-03-11 19:22:13,884: INFO: storing numpy array 'syn0' to wiki.zh.text.model.syn0.npy 2015-03-11 19:22:20,797: INFO: storing numpy array 'syn1' to wiki.zh.text.model.syn1.npy 2015-03-11 19:22:40,667: INFO: storing 278291x400 projection weights into wiki.zh.text.vector |
让我们看一下训练好的中文维基百科word2vec模型“wiki.zh.text.vector"的效果:
In [1]: import gensim In [2]: model = gensim.models.Word2Vec.load("wiki.zh.text.model") In [3]: model.most_similar(u"足球") Out[3]: [(u'\u8054\u8d5b', 0.6553816199302673), (u'\u7532\u7ea7', 0.6530429720878601), (u'\u7bee\u7403', 0.5967546701431274), (u'\u4ff1\u4e50\u90e8', 0.5872289538383484), (u'\u4e59\u7ea7', 0.5840631723403931), (u'\u8db3\u7403\u961f', 0.5560152530670166), (u'\u4e9a\u8db3\u8054', 0.5308005809783936), (u'allsvenskan', 0.5249762535095215), (u'\u4ee3\u8868\u961f', 0.5214947462081909), (u'\u7532\u7ec4', 0.5177896022796631)] In [4]: result = model.most_similar(u"足球") In [5]: for e in result: print e[0], e[1] ....: 联赛 0.65538161993 甲级 0.653042972088 篮球 0.596754670143 俱乐部 0.587228953838 乙级 0.58406317234 足球队 0.556015253067 亚足联 0.530800580978 allsvenskan 0.52497625351 代表队 0.521494746208 甲组 0.51778960228 In [6]: result = model.most_similar(u"男人") In [7]: for e in result: print e[0], e[1] ....: 女人 0.77537125349 家伙 0.617369174957 妈妈 0.567102909088 漂亮 0.560832381248 잘했어 0.540875017643 谎言 0.538448691368 爸爸 0.53660941124 傻瓜 0.535608053207 예쁘다 0.535151124001 mc刘 0.529670000076 In [8]: result = model.most_similar(u"女人") In [9]: for e in result: print e[0], e[1] ....: 男人 0.77537125349 我的某 0.589010596275 妈妈 0.576344847679 잘했어 0.562340974808 美丽 0.555426716805 爸爸 0.543958246708 新娘 0.543640494347 谎言 0.540272831917 妞儿 0.531066179276 老婆 0.528521537781 In [10]: result = model.most_similar(u"青蛙") In [11]: for e in result: print e[0], e[1] ....: 老鼠 0.559612870216 乌龟 0.489831030369 蜥蜴 0.478990525007 猫 0.46728849411 鳄鱼 0.461885392666 蟾蜍 0.448014199734 猴子 0.436584025621 白雪公主 0.434905380011 蚯蚓 0.433413207531 螃蟹 0.4314712286 In [12]: result = model.most_similar(u"姨夫") In [13]: for e in result: print e[0], e[1] ....: 堂伯 0.583935439587 祖父 0.574735701084 妃所生 0.569327116013 内弟 0.562012672424 早卒 0.558042645454 曕 0.553856015205 胤祯 0.553288519382 陈潜 0.550716996193 愔之 0.550510883331 叔父 0.550032019615 In [14]: result = model.most_similar(u"衣服") In [15]: for e in result: print e[0], e[1] ....: 鞋子 0.686688780785 穿着 0.672499775887 衣物 0.67173999548 大衣 0.667605519295 裤子 0.662670075893 内裤 0.662210345268 裙子 0.659705817699 西装 0.648508131504 洋装 0.647238850594 围裙 0.642895817757 In [16]: result = model.most_similar(u"公安局") In [17]: for e in result: print e[0], e[1] ....: 司法局 0.730189085007 公安厅 0.634275555611 公安 0.612798035145 房管局 0.597343325615 商业局 0.597183346748 军管会 0.59476184845 体育局 0.59283208847 财政局 0.588721752167 戒毒所 0.575558543205 新闻办 0.573395550251 In [18]: result = model.most_similar(u"铁道部") In [19]: for e in result: print e[0], e[1] ....: 盛光祖 0.565509021282 交通部 0.548688530922 批复 0.546967327595 刘志军 0.541010737419 立项 0.517836689949 报送 0.510296344757 计委 0.508456230164 水利部 0.503531932831 国务院 0.503227233887 经贸委 0.50156635046 In [20]: result = model.most_similar(u"清华大学") In [21]: for e in result: print e[0], e[1] ....: 北京大学 0.763922810555 化学系 0.724210739136 物理系 0.694550514221 数学系 0.684280991554 中山大学 0.677202701569 复旦 0.657914161682 师范大学 0.656435549259 哲学系 0.654701948166 生物系 0.654403865337 中文系 0.653147578239 In [22]: result = model.most_similar(u"卫视") In [23]: for e in result: print e[0], e[1] ....: 湖南 0.676812887192 中文台 0.626506924629 収蔵 0.621356606483 黄金档 0.582251906395 cctv 0.536769032478 安徽 0.536752820015 非同凡响 0.534517168999 唱响 0.533438682556 最强音 0.532605051994 金鹰 0.531676828861 In [24]: result = model.most_similar(u"习近平") In [25]: for e in result: print e[0], e[1] ....: 胡锦涛 0.809472680092 江泽民 0.754633367062 李克强 0.739740967751 贾庆林 0.737033963203 曾庆红 0.732847094536 吴邦国 0.726941585541 总书记 0.719057679176 李瑞环 0.716384887695 温家宝 0.711952567101 王岐山 0.703570842743 In [26]: result = model.most_similar(u"林丹") In [27]: for e in result: print e[0], e[1] ....: 黄综翰 0.538035452366 蒋燕皎 0.52646958828 刘鑫 0.522252976894 韩晶娜 0.516120731831 王晓理 0.512289524078 王适 0.508560419083 杨影 0.508159279823 陈跃 0.507353425026 龚智超 0.503159761429 李敬元 0.50262516737 In [28]: result = model.most_similar(u"语言学") In [29]: for e in result: print e[0], e[1] ....: 社会学 0.632598280907 人类学 0.623406708241 历史学 0.618442356586 比较文学 0.604823827744 心理学 0.600066184998 人文科学 0.577783346176 社会心理学 0.575571238995 政治学 0.574541330338 地理学 0.573896467686 哲学 0.573873817921 In [30]: result = model.most_similar(u"计算机") In [31]: for e in result: print e[0], e[1] ....: 自动化 0.674171924591 应用 0.614087462425 自动化系 0.611132860184 材料科学 0.607891201973 集成电路 0.600370049477 技术 0.597518980503 电子学 0.591316461563 建模 0.577238917351 工程学 0.572855889797 微电子 0.570086717606 In [32]: model.similarity(u"计算机", u"自动化") Out[32]: 0.67417196002404789 In [33]: model.similarity(u"女人", u"男人") Out[33]: 0.77537125129824813 In [34]: model.doesnt_match(u"早餐 晚餐 午餐 中心".split()) Out[34]: u'\u4e2d\u5fc3' In [35]: print model.doesnt_match(u"早餐 晚餐 午餐 中心".split()) 中心 |
有好的也有坏的case,甚至bad case可能会更多一些,这和语料库的规模有关,还和分词器的效果有关等等,不过这个实验暂且就到这里了。至于word2vec有什么用,目前除了用来来计算词语相似度外,业界更关注的是word2vec在具体的应用任务中的效果,这个才是更有意思的东东,也欢迎大家一起探讨。
注:原创文章,转载请注明出处“我爱自然语言处理”:www.52nlp.cn
本文链接地址:https://www.52nlp.cn/中英文维基百科语料上的word2vec实验
如果确认是内存的问题,那只有加内存呢:)
[回复]
博主,我的机器是16G内存,想训练的语料有100G,请问这样会不会受内存限制呢?
感谢。
[回复]
52nlp 回复:
15 9 月, 2015 at 07:50
不太确定,貌似有点难度,你自己试一下就知道了
[回复]
远山 回复:
15 9 月, 2015 at 17:38
语料是放在内存中的吗?
如果是放在内存中,是不是语料大小肯定不能超过内存大小呢?
谢谢~
[回复]
52nlp 回复:
15 9 月, 2015 at 17:50
不完全是这样的,gensim有自己的处理模式,可以一边处理句子一边进行统计,具体有点忘了。
谢谢楼主
请问你用的是什么配置的电脑,我想去买个跟你的一样的。
[回复]
52nlp 回复:
15 9 月, 2015 at 13:52
文中其实已经说了,用的是macbook pro(4核16G机器),不过内存是我后来自己加的,你可以加内存试试。
[回复]
谢谢你。文中好像是说了。
[回复]
您好,照着您的教程我已经跑完,但最后的结果也可能与分词有关,他把"欧几里德"这个词分的碎碎的,变成"欧" "几" "里" "德",我换成了jieba做分词效果好一些,但还有个问题,就是在调用您process_wiki.py脚本时,英文的名字如:杰弗里·辛顿中的·被过滤掉了,
这就导致最后结果的一些误差,请问,有办法能不过滤这些名称中的点吗?我gensim官网看了看API,但实在没有找到,您有办法吗?谢谢.
[回复]
52nlp 回复:
21 9 月, 2015 at 17:36
这个需要你自己修改代码了,process_wiki.py里调用了gensim的处理代码,应该是去掉了所有的标点符号
[回复]
您好,请问能够计算相似度的词需要满足什么条件呢?为什么有的词出现在训练语料中但在计算相似度的时候会出现keyerror呢?
File "/usr/local/lib/python3.4/dist-packages/gensim/models/word2vec.py", line 1226, in similarity
return dot(matutils.unitvec(self[w1]), matutils.unitvec(self[w2]))
File "/usr/local/lib/python3.4/dist-packages/gensim/models/word2vec.py", line 1206, in __getitem__
return self.syn0[self.vocab[words].index]
KeyError: ……
[回复]
52nlp 回复:
23 10 月, 2015 at 19:59
按道理说应该不会,会不会是编码问题没有识别?
[回复]
您好,我刚开始接触自然语言处理与机器翻译,我可以知道您的联系方式吗?
[回复]
楼主你好,我是在win7系统下,用Python2.7做中文word2vec,先将文本用结巴分词(分词效果不错)然后放入模型中训练,但训练出来的是单个字的向量,而没有词(两个或多个字)的向量,
如:model[u'目前'] KeyError: u'\u76ee\u524d'
model[u'目'] ……输出词向量 model[u'前'] ……输出词向量
请问这是为什么?这与操作系统有关吗?我小白一只,还望回复:)
[回复]
52nlp 回复:
23 10 月, 2015 at 20:58
抱歉,这个不清楚,如果是单个字的向量,是否说明分词用的有问题?都分成单字了
[回复]
博主,您好,谢谢您的分享。
我尝试了"二、中文维基百科的Word2Vec测试",
操作到模型训练时,才执行了一分多钟,就被终止了,
不知道博主有没有没碰到类似情况?难道是内存不够?
mecab我用的是,博主分享的mecab_chinese_data_binary_v0.3.tar.gz
以下是log:
python train_word2vec_model.py wiki.zh.text.jian.seg wiki.zh.text.model wiki.zh.text.vector
2015-10-27 19:26:11,686: INFO: running train_word2vec_model.py wiki.zh.text.jian.seg wiki.zh.text.model wiki.zh.text.vector
2015-10-27 19:26:11,686: INFO: collecting all words and their counts
2015-10-27 19:26:11,710: INFO: PROGRESS: at sentence #0, processed 0 words, keeping 0 word types
2015-10-27 19:26:17,989: INFO: PROGRESS: at sentence #10000, processed 13007883 words, keeping 330086 word types
2015-10-27 19:26:22,672: INFO: PROGRESS: at sentence #20000, processed 22497908 words, keeping 475420 word types
......
2015-10-27 19:27:35,977: INFO: PROGRESS: at sentence #240000, processed 159978067 words, keeping 1666699 word types
2015-10-27 19:27:38,888: INFO: PROGRESS: at sentence #250000, processed 165380110 words, keeping 1703105 word types
2015-10-27 19:27:39,123: INFO: collected 1705970 word types from a corpus of 165703371 raw words and 250748 sentences
Killed
[回复]
52nlp 回复:
27 10 月, 2015 at 22:46
很像是内存问题,你的机器内存多大?
[回复]
步行者 回复:
27 10 月, 2015 at 23:01
我用的是阿里云ECS虚主机,
CPU: 1核
内存: 512MB
操作系统: Ubuntu 14.04 64位。
不好意思,我是新手,机器配置多少合适?
阿里云虚拟机加配置比较容易。
[回复]
52nlp 回复:
28 10 月, 2015 at 10:35
虽然中文维基语料不大,但是你这个内存也太小了,阿里云虚拟机适合做web service,用来训练模型有点小,内存开到4G估计问题不大,但是应该花费会多一些。你自己的电脑最后有个linux环境(虚拟机或单独系统)来玩这个。
好的,谢谢回复。
把虚拟机的内存从500M,升配为2G后,
暂时不出错了,还在运行中,估计花费较长时间。
[回复]
您好,我想问一下这个得到的词向量可以指定以某个词为中心聚类么?还有这个算法本身是否本身假定具有马氏性,对于Ngram假定,变成向量表示也具有?还是说假定具有,那个最后一个问题:gensim/word2vec和直接word2vec包那个更好用一些呢?
[回复]
关于第一个问题,这个暂时指定不了某个词为中心词聚类;关于第二个问题,我没有太明白你的描述;关于第三个问题,两个其实都还好用,可以试一下。
[回复]
Cathy1272015 回复:
5 11 月, 2015 at 16:30
第二个问题,我是想说,之前N-gram模型做了一个马式假定,就是我们假定类似这种p(w100|w1,w2,w3,..w99)=p(w100|w98,w99),现在变成词向量形式,也具有?
[回复]
52nlp 回复:
8 11 月, 2015 at 21:16
Ngram语言模型和词向量还是有区别的吧,后者应该不需要这个假定。
[回复]
Cathy1272015 回复:
11 11 月, 2015 at 22:18
恩,好的,多谢您,另外我想测试一下结果对于我的样本大小的敏感性,这个gensim包里面有没有命令来完成?多谢多谢
52nlp 回复:
12 11 月, 2015 at 11:48
抱歉,不太清楚
博主您好,请问您的Python是用32位的还是64位?我的8G内存电脑,用200+M的语料得到70+M的model,加载model时都报Memory Error,想知道是否与Python版本有关。
[回复]
52nlp 回复:
8 11 月, 2015 at 21:20
之前没注意这个问题,用搜索的方法试了一下,貌似是64位的,有没有具体的报错信息?
[回复]
model不能像map那么判断,我没有找到判断是否存在某个词的向量,麻烦楼主告知。
[回复]
52nlp 回复:
12 11 月, 2015 at 11:16
gensim中貌似没有提供这样的接口
[回复]
求问博主word2vec最后能直接导出一个大的matrix么 像tf-idf那样的
[回复]
52nlp 回复:
12 11 月, 2015 at 11:37
tf-idf貌似需要词和篇章做关联,word2vec不需要吧?
[回复]
博主您好,我的电脑配置i7 8G的,将英文语料变成text时成功了,即生成了wiki.en.text,但是在第二步 训练出模型wiki.en.text.vector时候出现了MemoryError错误,
2015-11-17 20:13:05,338: INFO: running train_word2vec_model.py wiki.en.text wiki.en.text.model wiki.en.text.vector
2015-11-17 20:13:05,339: INFO: collecting all words and their counts
Traceback (most recent call last):
File "train_word2vec_model.py", line 28, in
workers=multiprocessing.cpu_count())
File "C:\Python27\lib\site-packages\gensim-0.12.3-py2.7-win32.egg\gensim\models\word2vec.py", line 431, in __init__
self.build_vocab(sentences, trim_rule=trim_rule)
File "C:\Python27\lib\site-packages\gensim-0.12.3-py2.7-win32.egg\gensim\models\word2vec.py", line 495, in build_vocab
self.scan_vocab(sentences, trim_rule=trim_rule) # initial survey
File "C:\Python27\lib\site-packages\gensim-0.12.3-py2.7-win32.egg\gensim\models\word2vec.py", line 506, in scan_vocab
for sentence_no, sentence in enumerate(sentences):
File "C:\Python27\lib\site-packages\gensim-0.12.3-py2.7-win32.egg\gensim\models\word2vec.py", line 1580, in __iter__
for line in itertools.islice(fin, self.limit):
MemoryError
请问有什么解决办法吗?
[回复]
52nlp 回复:
17 11 月, 2015 at 22:11
这个应该是内存问题了,你换个小一些的数据跑一下看看是否能通过
[回复]
博主你好,我在执行第二步将训练出模型wiki.en.text.vector时候出现了OverflowError: Python int too large to convert to C long问题。
代码出错位置在这:model = Word2Vec(LineSentence(inp),size=400,window=5,min_count=5,workers=multiprocessing.cpu_count())
详细请问如下:
Traceback (most recent call last):
File "train_word2vetor_model.py", line 27, in
model = Word2Vec(LineSentence(inp),size=400,window=5,min_count=5,workers=multiprocessing.cpu_count())
File "d:\Anaconda3\lib\site-packages\gensim\models\word2vec.py", line 312, in __init__
self.build_vocab(sentences)
File "d:\Anaconda3\lib\site-packages\gensim\models\word2vec.py", line 414, in build_vocab
self.reset_weights()
File "d:\Anaconda3\lib\site-packages\gensim\models\word2vec.py", line 521, in reset_weights
random.seed(uint32(self.hashfxn(self.index2word[i] + str(self.seed))))
OverflowError: Python int too large to convert to C long
我谷歌查过说是python对int型数据没有要求,而C有长度要求,我不知道转换的代码在哪?也查了调用的函数,因为我对这行代码不是很理解,希望楼主能够指点一下
[回复]
52nlp 回复:
19 11 月, 2015 at 19:22
按你的描述google了一下,貌似这是在windows环境下出现的问题:https://www.kaggle.com/c/word2vec-nlp-tutorial/forums/t/11197/gensim-word2vec-cython-on-windows
这个帖子下面有同学给了一个解决方案,可以试一下:
I had the same problem with 64bit machine. I think it is related to the version of Python (32 bit vs 64 bit). To solve the problem in this project, I passed my own hash function as a parameter to word2vec constructor:
def hash32(value):
return hash(value) & 0xffffffff
....
model = Word2Vec(sentences, workers=num_workers, \
size=num_features, min_count = min_word_count, \
window = context, sample = downsampling, seed=1, hashfxn=hash32)
[回复]
我觉得楼上的报内存不够的错误是因为装的是32位的python,32位只能寻址到4g的内存,可以改换64位的python,但是numpy和scipy都要换成64位的,或者把word2vec 里的参数调整一下,size是映射的向量维度,min_count是这个词最少要出现几次,window是它根据前后的几个单词。
[回复]
博主你好,我在运行到繁体转简体中文转换时,不明白opencc指令在windows下如何执行,在执行opencc -i wiki.zh.text -o wiki.zh.text.jian -c zht2zhs.ini这条指令时,我用pip安装了opencc,但是我想这条指令不会是在python代码里面执行吧,然而我自己也查了好久,网上关于opencc指令如何运行也没有一个说清楚了的,希望博主能够指导一下。十分感谢。
[回复]
52nlp 回复:
30 11 月, 2015 at 22:06
opencc是一个c++程序,官方文档写了一下windows下的编译方法,用cmake给了两个编译方法:
Windows MSYS:
cmake .. -G "MSYS Makefiles" -DCMAKE_INSTALL_PREFIX="" -DCMAKE_BUILD_TYPE=Release
make
Windows Visual Studio (2013 or higher required):
cmake .. -G "Visual Studio 12" -DCMAKE_INSTALL_PREFIX="" -DCMAKE_BUILD_TYPE=Release
make
还有一个简单的方法是你安装python-opencc,windows先安装python-opencc貌似附带了opencc,可以参考这个文档安装python-opencc: http://www.minitw.com/archives/program/install-opencc-under-windows.htm
[回复]
请问,自然语言和深度学习结合的时候,输入是怎么定义的,格式是怎样的?谢谢
[回复]
博主你好,第一步parse出来的只有正文吗?
请问如何可以把wiki页面下的Categories也读出来?
[回复]
博主 您好 请我我在运行Word2Vec(contents, size=400, window=5, min_count=5,
workers=multiprocessing.cpu_count())时候,能出结果,但是出现以下警告,请问怎么解决?
E:\WinPython-64bit-3.4.3.2\python-3.4.3.amd64\lib\site-packages\gensim\models\word2vec.py:675: UserWarning: C extension not loaded for Word2Vec, training will be slow. Install a C compiler and reinstall gensim for fast training.
warnings.warn("C extension not loaded for Word2Vec, training will be slow. "
[回复]
52nlp 回复:
15 1 月, 2016 at 22:12
已经写得很清楚了,你没有安装C编译器,所以训练过程会比较慢,如果你能接受这个速度,可以忽略这个警告;gensim应该是用到了cython加速,所以需要一个c编译器,linux下可以安装gcc,windows下我不太清楚。
[回复]
main_fly 回复:
15 1 月, 2016 at 23:33
谢谢楼主!已经解决了!windows安装的vs2010!
[回复]
黄志勇 回复:
1 3 月, 2016 at 09:48
朋友,能否把你训练出来的重恩词向量文件分享一下啊,我需要写大论文,现在时间有点赶,谢谢啊,我的邮箱是hot13500@163.com
楼主大神,可否把你的中文这一块的训练出来的model文件共享出来啊
[回复]
楼主你好,按照你的步奏,我做到mecab的时候下载不到了,现在写大论文需要使用这个,时间有点急,希望你能提供下训练好的中文词向量,非常谢谢。我的邮箱是287590296@qq.com
[回复]
楼主,我被卡在mecab那里,无法下载包,现在写大论文,时间有点赶,还希望您能提供下训练好的中文词向量文件,在此感谢了。
[回复]
你好,朋友,最近急着论文,能否提供下中文词向量文件啊,谢谢,我的邮箱是287590296@qq.com
[回复]
52nlp 回复:
1 3 月, 2016 at 10:46
抱歉,之前整理电脑硬盘貌似已经删除了,另外这个你自己按上面的步骤训练应该不费事吧
[回复]