隐马尔科夫模型(HMM)依然是读者访问“我爱自然语言处理”的一个热门相关关键词,我曾在《HMM学习最佳范例与崔晓源的博客》中介绍过国外的一个不错的HMM学习教程,并且国内崔晓源师兄有一个相应的翻译版本,不过这个版本比较简化和粗略,有些地方只是概况性的翻译了一下,省去了一些内容,所以从今天开始计划在52nlp上系统的重新翻译这个学习教程,希望对大家有点用。

一、介绍(Introduction)
  我们通常都习惯寻找一个事物在一段时间里的变化模式(规律)。这些模式发生在很多领域,比如计算机中的指令序列,句子中的词语顺序和口语单词中的音素序列等等,事实上任何领域中的一系列事件都有可能产生有用的模式。
  考虑一个简单的例子,有人试图通过一片海藻推断天气——民间传说告诉我们‘湿透的’海藻意味着潮湿阴雨,而‘干燥的’海藻则意味着阳光灿烂。如果它处于一个中间状态(‘有湿气’),我们就无法确定天气如何。然而,天气的状态并没有受限于海藻的状态,所以我们可以在观察的基础上预测天气是雨天或晴天的可能性。另一个有用的线索是前一天的天气状态(或者,至少是它的可能状态)——通过综合昨天的天气及相应观察到的海藻状态,我们有可能更好的预测今天的天气。
  这是本教程中我们将考虑的一个典型的系统类型。
  首先,我们将介绍产生概率模式的系统,如晴天及雨天间的天气波动。
  然后,我们将会看到这样一个系统,我们希望预测的状态并不是观察到的——其底层系统是隐藏的。在上面的例子中,观察到的序列将是海藻而隐藏的系统将是实际的天气。
  最后,我们会利用已经建立的模型解决一些实际的问题。对于上述例子,我们想知道:
  1. 给出一个星期每天的海藻观察状态,之后的天气将会是什么?
  2. 给定一个海藻的观察状态序列,预测一下此时是冬季还是夏季?直观地,如果一段时间内海藻都是干燥的,那么这段时间很可能是夏季,反之,如果一段时间内海藻都是潮湿的,那么这段时间可能是冬季。

未完待续:生成模式

本文翻译自:http://www.comp.leeds.ac.uk/roger/HiddenMarkovModels/html_dev/main.html
部分翻译参考:隐马尔科夫模型HMM自学

转载请注明出处“我爱自然语言处理”:www.52nlp.cn

本文链接地址:https://www.52nlp.cn/hmm-learn-best-practices-one-introduction

作者 52nlp

《HMM学习最佳范例一:介绍》有8条评论
  1. [...] 如果对HMM不熟悉的话,推荐先看一看52nlp的系列文章《HMM学习最佳范例》,本文假设读者已经对HMM有所了解,很多地方会直接提出相关概念。理解前向算法,维特比算法是关键,关于无监督学习HMM的Baum-Welch算法在本文中没有使用,至少了解它的作用即可。 [...]

  2. 博主,请问可不可以列出一个全部文章目录?从最新的往期的。

    [回复]

    52nlp 回复:

    请看一下右边栏,有分类栏汇总,也有时间轴

    [回复]

  3. 您好,我在阅读译版的HMM学习最佳范例的过程中发现有一些不明确的地方 想要从英文原版处对照理解一下, 可是文中提到的国外原版的教程链接似乎已经失效了,现在是利兹大学computing的一个general page,我尝试google了一下并没有找到,请问是否可以重新更新一个有效的英文原版地址呢?感谢

    [回复]

    52nlp 回复:

    这个我现在也找不到了,抱歉

    [回复]

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注